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High-integrity maps are essential for
autonomous navigation

Wiy ﬂlgﬂ\ﬂ

\\
\
RN

\

Trajectory Obstacle
planning avoidance




HARVEY MUDD COLLEGE

Existing Approaches
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[1] Zou, L., & Sester, M. ArXiv preprint [2] Harithas, S. S., & Krishna, M. ArXiv preprint [3] Katyal, K., & Hager, G. D. IEEE Tra%
Robotics. [4] Gu, X., lvanovic, B., & Pavone, M. International Conference on Intelligent Vehicles




Gaps and Opportunities
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Single modality |
approaches

lack robustness

Strict noise
assumptions are
more suited for
static environments
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Lack of semantiC s}
reasoning
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Can we use learned
methods and perform
sensor fusion?

Can we characterize
uncertainty without
strict assumptions on
the noise distributign?

Can we use my
vision and lanc
models?
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Multi-modal Vision and Language Models

Objects Missing Context

2

Vision models see objects but
lack contextual meaning

Can enable “Zero-Shot
Learning” for unseen
scenarios!
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Language models can't Large multi-modal
ground objects visually models bridge this gap
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[5] Dosovitskiy, A. et. al. ArXiv Preprint [6] Kirillov, A. et. al. ArXiv Preprint [7] Ding, X. et. al. European Conference on Computé
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Our Contributions

We propose a LiIDAR-Camera sensor fusion framework for
quantifying dynamic map uncertainty as well as
comprehensive scene change understanding

We use novel large vision-language models to perform zero-
shot semantic segmentation for more robust change
detection

We propose online KL divergence-based consisj
tracking algorithm and evaluate its efficacy under
weather conditions
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Outline

e Proposed Framework

o Vision Module
o LIiDAR Module
o Consistency Monitoring and Sensor Fusion

e EXxperiments
o Virtual KITTI dataset setup
o Key experimental parameters, metrics and baselines

o Key Results
o Selected change detection accuracy results for individual se
modalities
o Selected sensor fusion results on adverse weather conditions
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Vision Module
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[6] Kirillov, A. et. al. ArXiv Preprint [7] Ding, X. et. al. ECCV [8] Kullback, S., & Leibler, R. A. The Annals of Mathematical Statist




LiDAR Module

« PointNet®l: main architectural backbone
« Chosen because lightweight and efficient
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[9] Qi, C. R. et. al. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
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LIDAR Module: Preprocessing and Key Modifications

Convert depth images to point clouds using camera intrinsics and range

filtering to avoid simulator boundary artifacts
Compute local surface normal via KD-tree search!'® to capture

geometric structure for improved classification
Assign point-wise semantic categories from ground-truth annotations
with unified class labels for consistent analysis
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[15] Bentley, J. L. (1975). Communications of the ACM
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Consistency Monitoring

Vision KL LiDAR KL
Divergence ‘ Divergence
Semantic Richness Geometric Reliability

Fair weather Rainy weather
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Outline

e Proposed Framework

o Vision Module
o LiDAR Module
o Consistency Monitoring and Sensor Fusion

e EXxperiments
o Virtual KITTI dataset setup
o Key experimental parameters, metrics and baselines

o Key Results
o Selected change detection accuracy results for individual se
modalities
o Selected sensor fusion results on adverse weather conditions”
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Virtual KITTI Dataset!1°!

Pixel-level ground truth

Stress-test in controlled conditions
Multiple object categories

Several sequences for fair evaluation

Modification

Objects removed
programmatically to simulate
map-change
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[10] Cabon, Y., de Charette, R., Perrotton, X., & Hesch, J. ArXiv preprint
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Baselines and Metrics

Baselines __Metrics IR
e il 4

CLIPI'11: patch-difference change Eil KL divergencel®l (|)
maps using ViT-B/32 embeddings. jak

v.S. ground-truth

[12] -
LoFTR!"4!: Dense local feature change map

matching with transformer

Jaccard Distancel'4: Voxel Pearson
overlap metric for LIDAR maps correlation(13]

Fusion: Weighted Sum of Vision and tial |
LiDAR Scores Spatual agre

[8] Kullback, S., & Leibler, R. A. The Annals of Mathematical Statistics [11] Radford, A., et al. ICML [12] Sun, J., et al. CVPR [13] Pearson, K., 1896 1
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Evaluation Questions

How well do the predicted anomaly distributions align with ground-truth
changes induced by simulated infrastructure removal?

How accurately can each individual modality detect semantic changes in
the map under normal and degraded conditions?

Can fusing information from Vision and LiDAR improve map-ch
detection in diverse conditions?
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Outline

e Proposed Framework

o Vision Module
o LiDAR Module
o Consistency Monitoring and Sensor Fusion

e EXxperiments
o Virtual KITTI dataset setup
o Key experimental parameters, metrics and baselines

e Key Results
o Selected change detection accuracy results for individuz
modalities
o Selected sensor fusion results on adverse weather condit.
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Vision-Only Alignment with Ground-Truth Changes

DINOv2 + segmentation captures semantic differences from missing or
changed infrastructure.

Before Semantic differences
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Per-Modality Accuracy in Detecting Semantic Changes

Our Vision Module method achieves 95% overall True Positive Rate vs.
~60 — 75% for baselines.

Category Ours CLIPI11] LoFTRI2
Building
Traffic Light
Traffic Sign

Overall

[11] Radford, A., et al. International Conference on Machine Learning. [12] Sun, J., et al. IEEE/CVF Conference on Computer Vision and Pattern R % “ ‘
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Per-Modality Accuracy in Detecting Semantic Changes

Our LiDAR Module method shows KL divergence peaks fairly aligning
with true map changes.
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Fusion Preserves Robustness in Adverse Conditions

Our fusion method maintains strong alignment with ground truth under
rain and fog, while baselines degrade sharply.

Ours CLIPI'1+ LoFTRIA Ours CLIPI'1 4+ LoFTRIA
Jaccard + Jaccard +

[14] Jaccard [14] Jaccard
[14] [14]
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[8] Kullback, S., & Leibler, R. A. The Annals of Mathematical Statistics [11] Radford, A., et al. ICML [12] Sun, J., et al. CVPR [13] Pearson, K., 1896"
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Conclusion

e Our sensor fusion framework with KL divergence-based scoring
achieves high performance under normal conditions and maintains it in
adverse weather.

¢ Real-time anomaly detection with spatial heatmaps can provide
autonomous systems with change alerts and accurate localization,
addressing the critical gap between static maps and dynamic urban
environments for safer navigation.

e The integration of large vision-language models can enable
detection of novel infrastructure changes without requiring re
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Thank you!
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