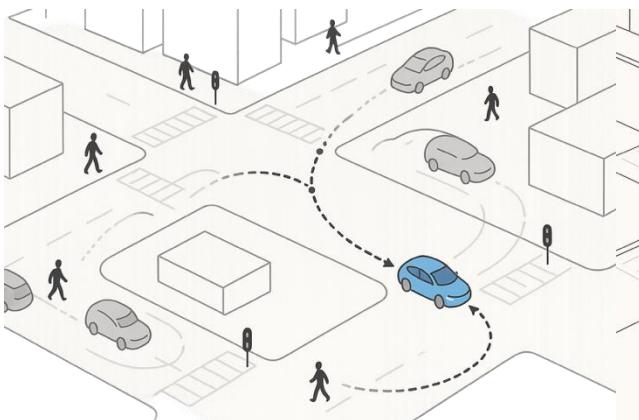


Language-Driven Semantic Change Detection in Urban Maps via Multi-Modal Deep Learning

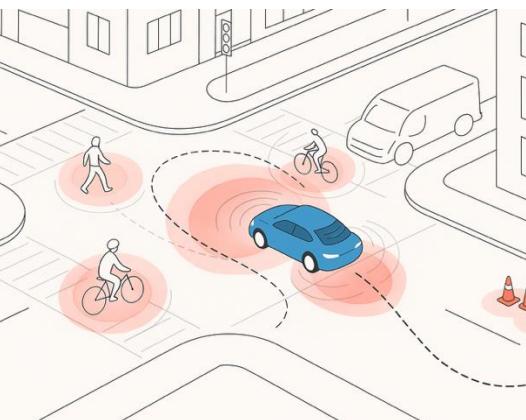
Huaze Liu, Zihao Gao, and Adyasha Mohanty, MADD Lab

Session C1, Sept 10, 2025

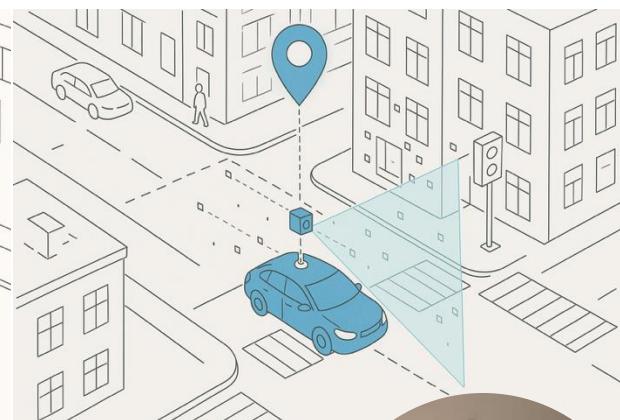
High-integrity maps are essential for autonomous navigation



Trajectory planning

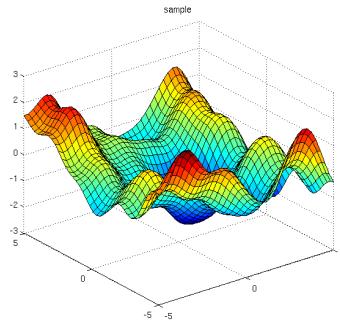


Obstacle avoidance

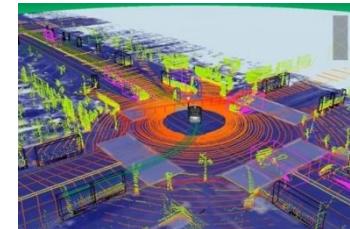


Accurate localization

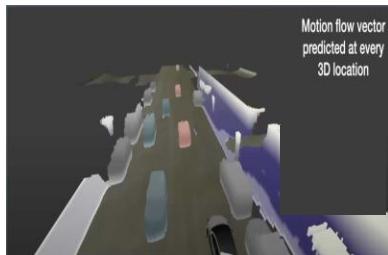
Existing Approaches



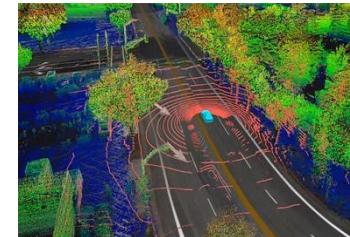
Heuristic or
statistical
methods^[1]



SLAM-based
approaches^[2]



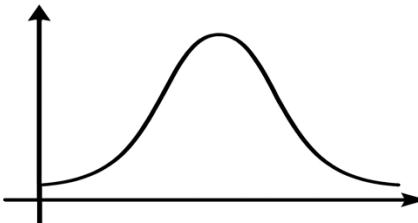
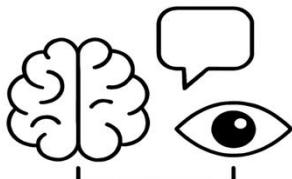
Deep networks
for occupancy
maps^[3]



Online HD Map
Estimation

[1] Zou, L., & Sester, M. ArXiv preprint [2] Harithas, S. S., & Krishna, M. ArXiv preprint [3] Katyal, K., & Hager, G. D. IEEE Trans. Robotics. [4] Gu, X., Ivanovic, B., & Pavone, M. International Conference on Intelligent Vehicles

Gaps and Opportunities



Single modality approaches lack robustness

Strict noise assumptions are more suited for static environments

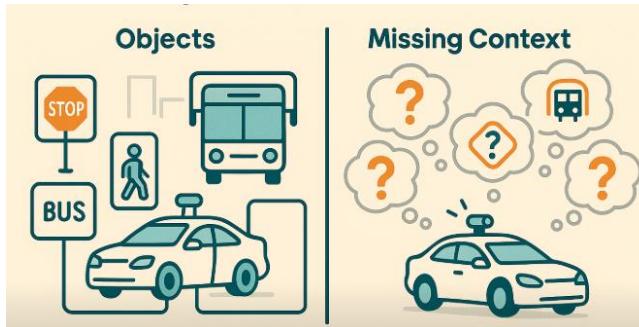
Lack of semantic reasoning

Can we use learned methods and perform sensor fusion?

Can we characterize uncertainty without strict assumptions on the noise distribution?

Can we use multi-modal vision and language models?

Multi-modal Vision and Language Models

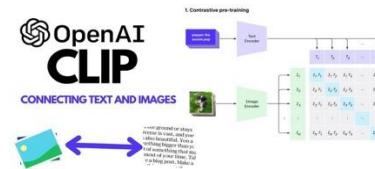


Vision models see objects but lack contextual meaning

Can enable “**Zero-Shot Learning**” for unseen scenarios!

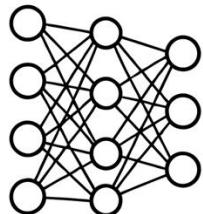
Language models can't ground objects visually

Large multi-modal models bridge this gap

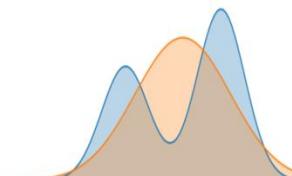


Our Contributions

We propose a LiDAR-Camera sensor fusion framework for quantifying dynamic map uncertainty as well as comprehensive scene change understanding



We use novel large vision-language models to perform zero-shot semantic segmentation for more robust change detection

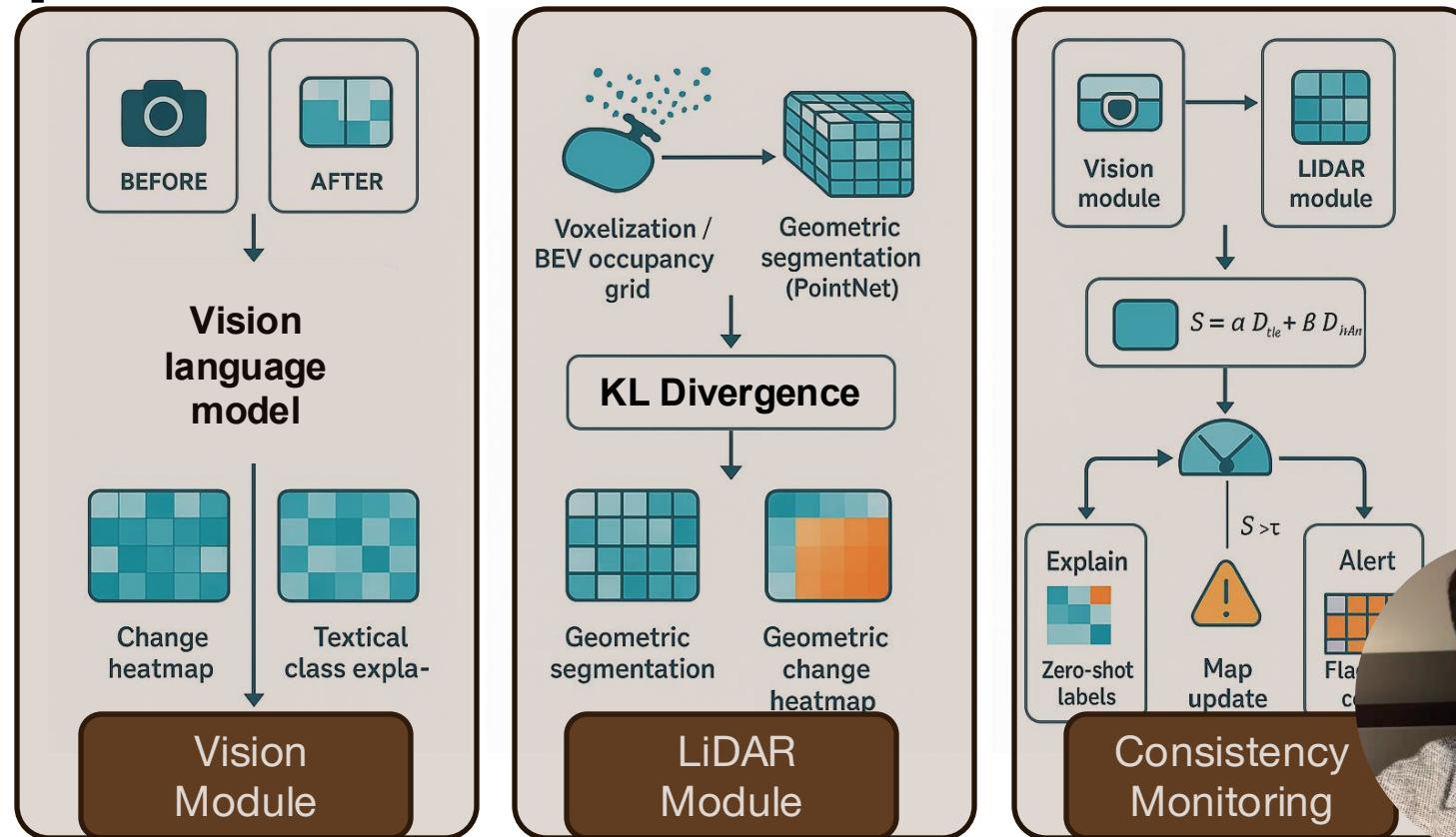


We propose online KL divergence-based consistency tracking algorithm and evaluate its efficacy under weather conditions

Outline

- **Proposed Framework**
 - **Vision Module**
 - **LiDAR Module**
 - **Consistency Monitoring and Sensor Fusion**
- **Experiments**
 - Virtual KITTI dataset setup
 - Key experimental parameters, metrics and baselines
- **Key Results**
 - Selected change detection accuracy results for individual sensor modalities
 - Selected sensor fusion results on adverse weather conditions

Proposed Framework



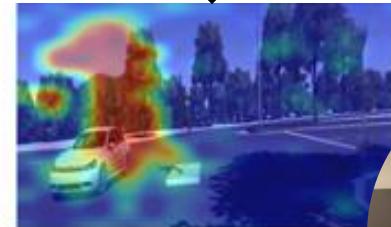
Vision Module



Zero-Shot
Object Detection^[6]

Segment Anything Model
(SAM) provides initial
masks ^[7]

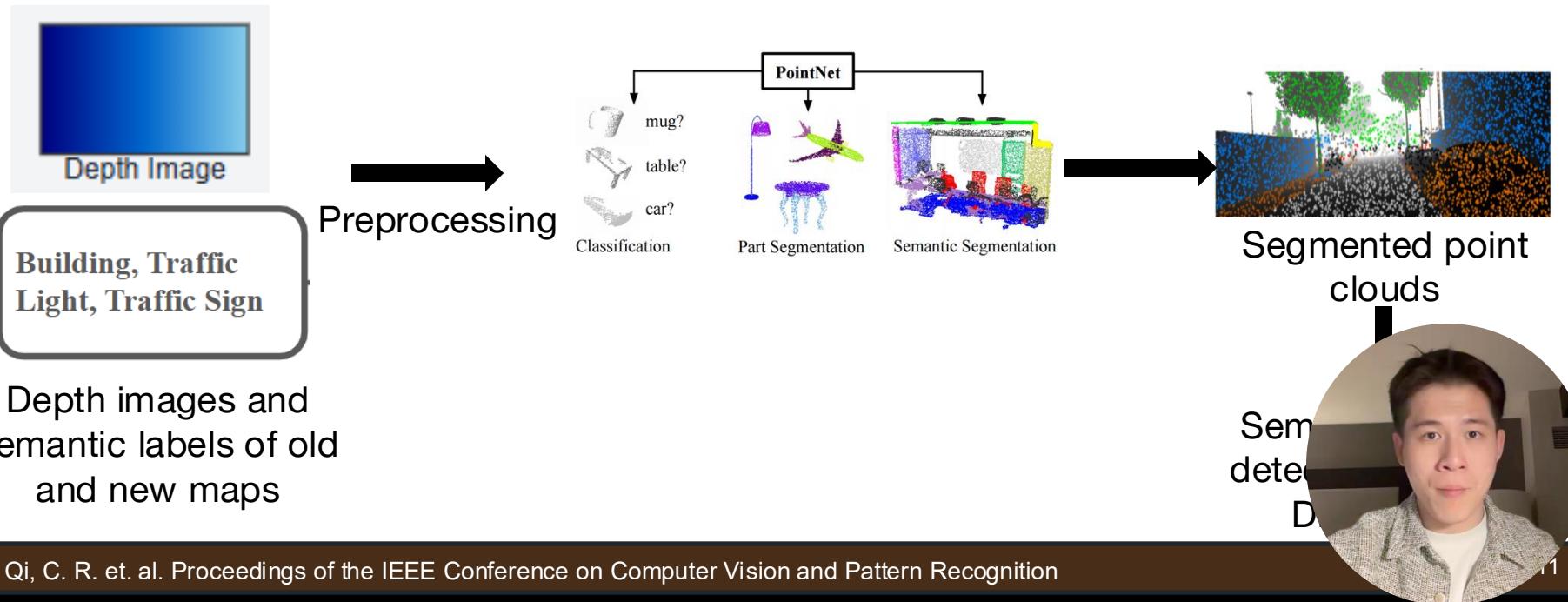
Prompts
refine
masks



Semantic change detection
KL Divergence^[8]

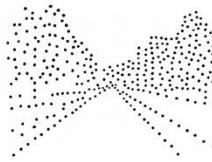
LiDAR Module

- PointNet^[9]: main architectural backbone
- Chosen because lightweight and efficient

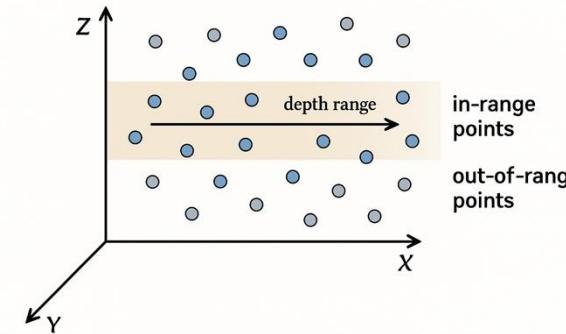


LiDAR Module: Preprocessing and Key Modifications

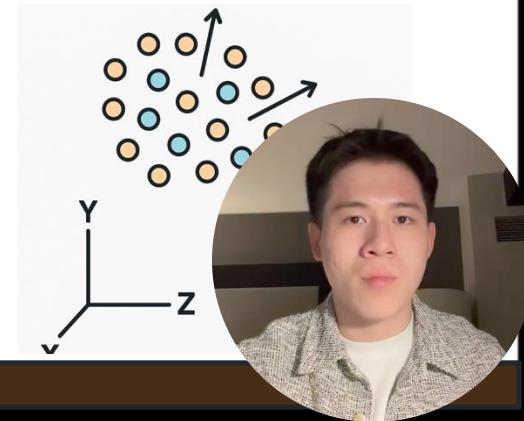
- Convert depth images to point clouds using camera intrinsics and range filtering to avoid simulator boundary artifacts
- Compute local surface normal via KD-tree search^[15] to capture geometric structure for improved classification
- Assign point-wise semantic categories from ground-truth annotations with unified class labels for consistent analysis



2D depth image

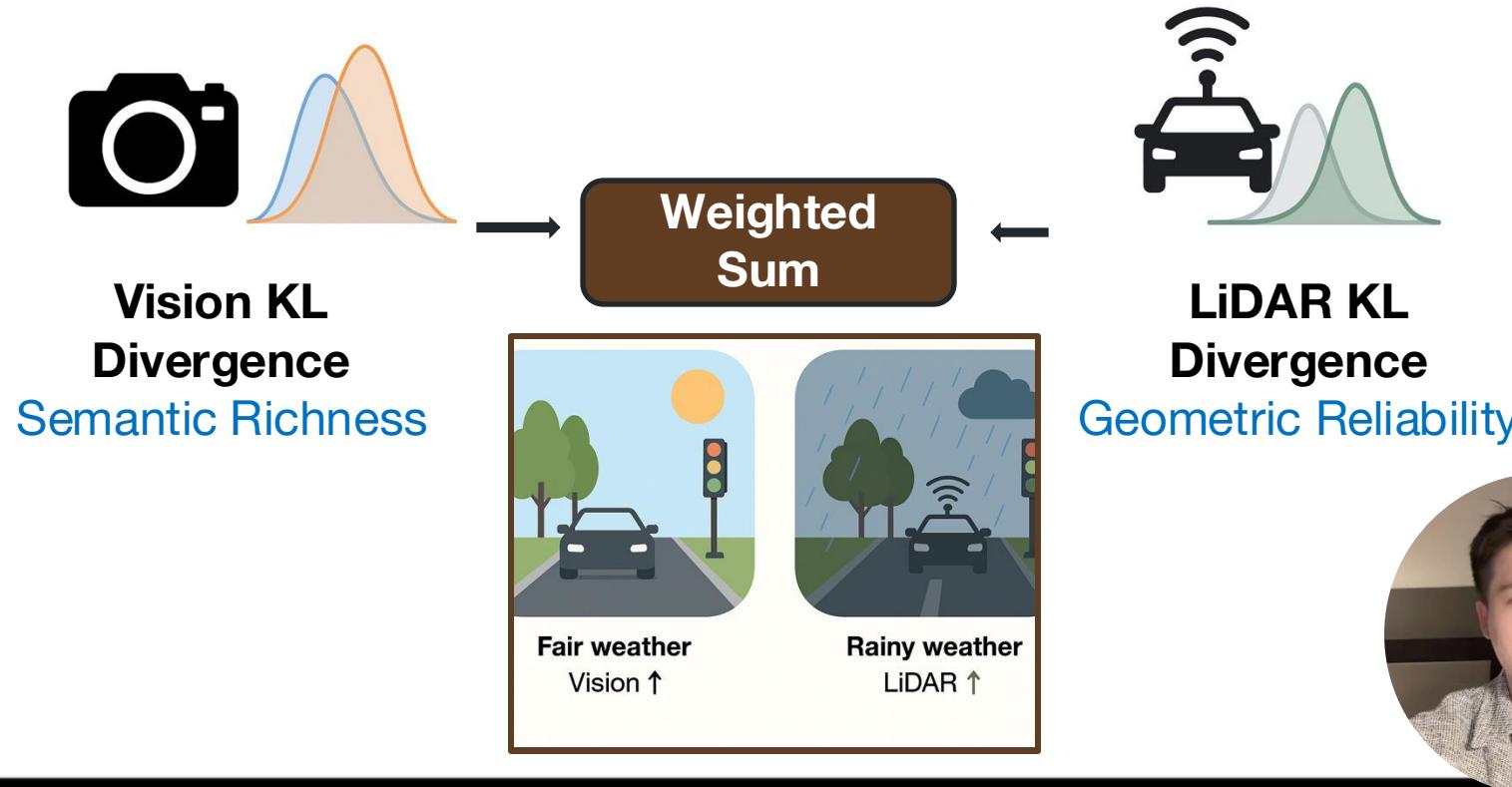


3D point cloud



[15] Bentley, J. L. (1975). Communications of the ACM

Consistency Monitoring

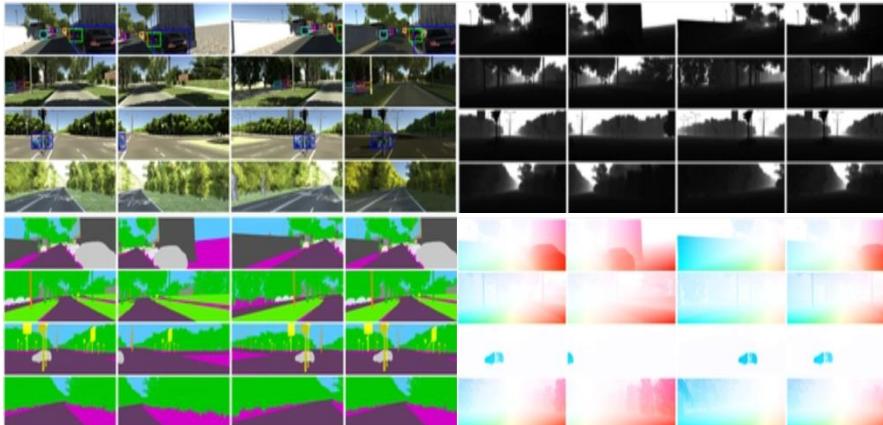


Outline

- Proposed Framework
 - Vision Module
 - LiDAR Module
 - Consistency Monitoring and Sensor Fusion
- Experiments
 - **Virtual KITTI dataset setup**
 - **Key experimental parameters, metrics and baselines**
- Key Results
 - Selected change detection accuracy results for individual sensor modalities
 - Selected sensor fusion results on adverse weather conditions

Virtual KITTI Dataset^[10]

- Pixel-level ground truth
- Stress-test in controlled conditions
- Multiple object categories
- Several sequences for fair evaluation



Modification

Objects removed
programmatically to simulate
map-change

Baselines and Metrics

Baselines

Contrastive Language-Image Pretraining

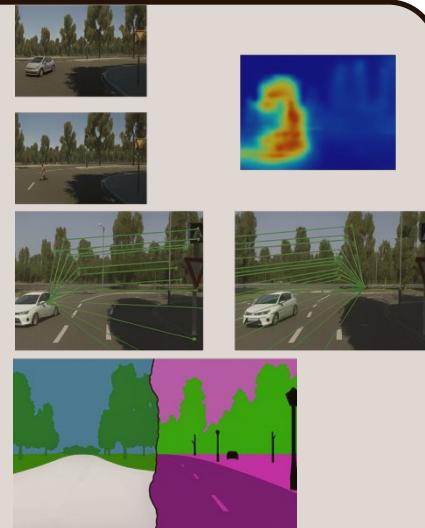
CLIP^[11] : Patch-difference change maps using ViT-B/32 embeddings.

Local Feature Transformer

LoFTR^[12] : Dense local feature matching with transformer

Jaccard Distance^[14]: Voxel overlap metric for LiDAR maps

Fusion: Weighted Sum of Vision and LiDAR Scores



Metrics

KL divergence^[8] (\downarrow)

v.s. ground-truth
change map

Pearson
correlation^[13] (\uparrow)

spatial agree

Evaluation Questions

How well do the predicted anomaly distributions align with ground-truth changes induced by simulated infrastructure removal?

How accurately can each individual modality detect semantic changes in the map under normal and degraded conditions?

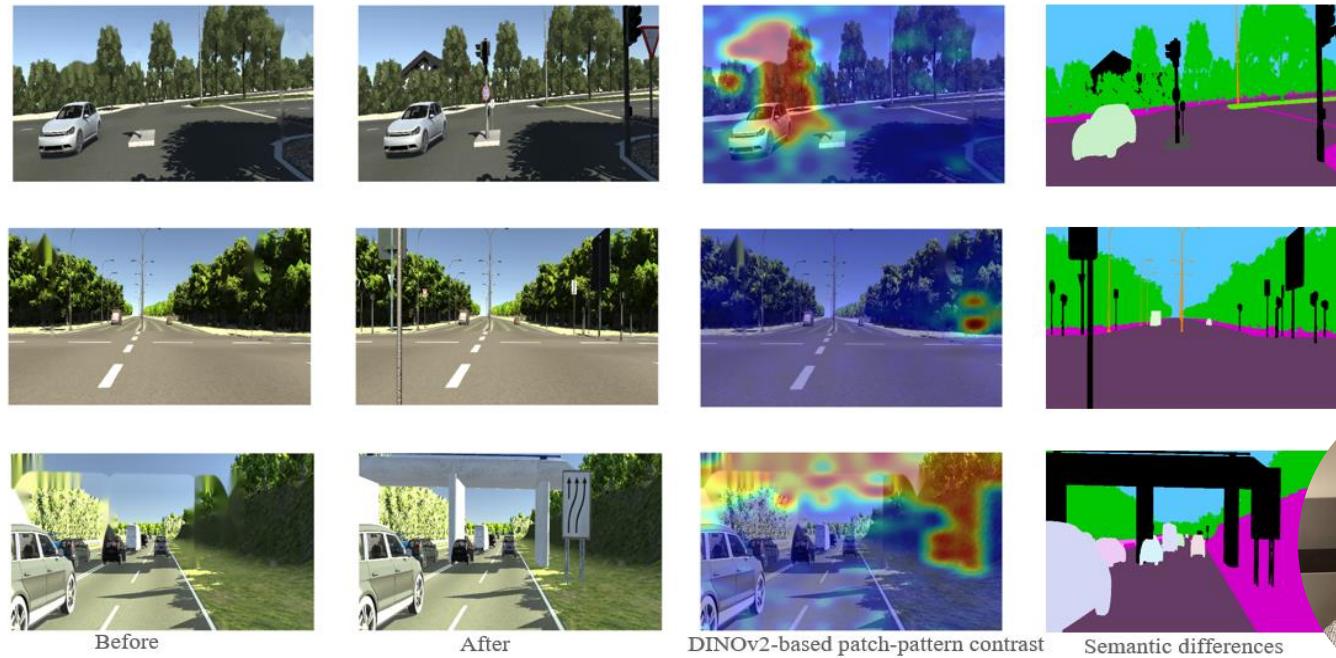
Can fusing information from Vision and LiDAR improve map-change detection in diverse conditions?

Outline

- Proposed Framework
 - Vision Module
 - LiDAR Module
 - Consistency Monitoring and Sensor Fusion
- Experiments
 - Virtual KITTI dataset setup
 - Key experimental parameters, metrics and baselines
- Key Results
 - Selected change detection accuracy results for individual modalities
 - Selected sensor fusion results on adverse weather conditions

Vision-Only Alignment with Ground-Truth Changes

DINOv2 + segmentation captures semantic differences from missing or changed infrastructure.



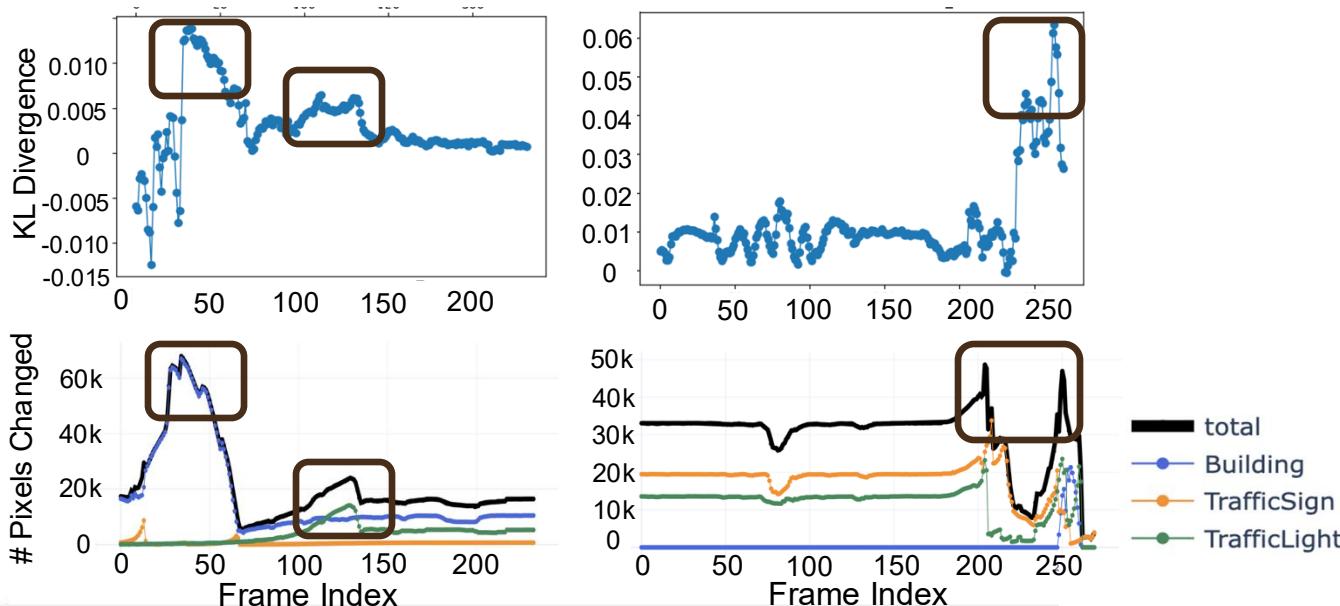
Per-Modality Accuracy in Detecting Semantic Changes

Our Vision Module method achieves 95% overall True Positive Rate vs. ~60 – 75% for baselines.

Category	Ours	CLIP ^[11]	LoFTR ^[12]
Building	84.8	60.3	55.4
Traffic Light	83.9	60.4	50.8
Traffic Sign	81.6	60.4	48.1
Overall	95.0	75.0	63.8

Per-Modality Accuracy in Detecting Semantic Changes

Our LiDAR Module method shows KL divergence peaks fairly aligning with true map changes.



Point Cloud
KLD

True
C

Fusion Preserves Robustness in Adverse Conditions

Our fusion method maintains strong alignment with ground truth under rain and fog, while baselines degrade sharply.

Normal Condition	Ours	CLIP ^[11] + Jaccard ^[14]	LoFTR ^[12] + Jaccard ^[14]
KL Divergence $e^{[8]} (\downarrow)$	0.11	0.63	0.52
Pearson Corr. ^[13] (\uparrow)	0.72	0.38	0.15

Rainy Condition	Ours	CLIP ^[11] + Jaccard ^[14]	LoFTR ^[12] + Jaccard ^[14]
KL Divergence $e^{[8]} (\downarrow)$	0.13	0.89	0.73
Pearson Corr. ^[13] (\uparrow)	0.68	0.37	

Conclusion

- Our sensor fusion framework with KL divergence-based scoring achieves high performance under normal conditions and maintains it in adverse weather.
- Real-time anomaly detection with spatial heatmaps can provide autonomous systems with change alerts and accurate localization, addressing the critical gap between static maps and dynamic urban environments for safer navigation.
- The integration of large vision-language models can enable the detection of novel infrastructure changes without requiring retraining.

Thank you!

Acknowledgements: MADD Lab

<https://sites.google.com/g.hmc.edu/madd-lab/home>

A screenshot of the MADD Lab website homepage. The header features a red navigation bar with 'MADD Lab' on the left and 'Home' 'About' 'Projects' 'Publications' 'Teaching' on the right. The main content area has a background image of a drone flying over a city skyline. Overlaid text reads 'Machine Learning and Autonomy for Diverse Domains' and '(MADD) at Harvey Mudd'. In the bottom right corner, there is a circular portrait of a young man.