
Language-Driven Semantic Change Detection in 
Urban Maps via Multi-Modal Deep Learning

Huaze Liu, Zihao Gao, and Adyasha Mohanty, MADD Lab

1Session C1, Sept 10, 2025



High-integrity maps are essential for 
autonomous navigation
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Trajectory 
planning

Obstacle 
avoidance

Accurate 
localization
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Existing Approaches

Heuristic or 
statistical 
methods[1]

SLAM-based 
approaches[2]

Deep networks 
for occupancy 
maps[3]

Online HD Map 
Estimation[4]
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Gaps and Opportunities

Single modality 
approaches
lack robustness

Strict noise 
assumptions are 
more suited for 
static environments

Lack of semantic 
reasoning

Can we use learned 
methods and perform 
sensor fusion?

Can we characterize 
uncertainty without 
strict assumptions on 
the noise distribution?

Can we use multi-modal 
vision and language 
models?
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Multi-modal Vision and Language Models

Vision models see objects but 
lack contextual meaning

Language models can't 
ground objects visually

Large multi-modal 
models bridge this gap

Can enable “Zero-Shot 
Learning” for unseen 

scenarios!
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Our Contributions

We propose a LiDAR-Camera sensor fusion framework for 
quantifying dynamic map uncertainty as well as 
comprehensive scene change understanding

We use novel large vision-language models to perform zero-
shot semantic segmentation for more robust change 

detection

We propose online KL divergence-based consistency 
tracking algorithm and evaluate its efficacy under adverse 

weather conditions



Outline
● Proposed Framework

○ Vision Module

○ LiDAR Module

○ Consistency Monitoring and Sensor Fusion

● Experiments
○ Virtual KITTI dataset setup
○ Key experimental parameters, metrics and baselines

● Key Results 
○ Selected change detection accuracy results for individual sensor 

modalities

○ Selected sensor fusion results on adverse weather conditions
8
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Proposed Framework

Vision 

language 
model

Vision 
Module

LiDAR
Module

Consistency 
Monitoring

KL Divergence
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Vision Module

Zero-Shot 
Object Detection[6]

Segment Anything Model 
(SAM) provides initial 

masks [7]

Semantic change detection using
KL Divergence[8]

Prompts 
refine 
masks 
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LiDAR Module
• PointNet[9]: main architectural backbone
• Chosen because lightweight and efficient

Depth images and 
semantic labels of old 

and new maps

Segmented point 
clouds

Preprocessing

Semantic change 
detection using KL 

Divergence 
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LiDAR Module: Preprocessing and Key Modifications

• Convert depth images to point clouds using camera intrinsics and range 
filtering to avoid simulator boundary artifacts

• Compute local surface normal via KD-tree search[15] to capture 
geometric structure for improved classification

• Assign point-wise semantic categories from ground-truth annotations 
with unified class labels for consistent analysis

[15] Bentley, J. L. (1975). Communications of the ACM



13

Consistency Monitoring

Weighted 
Sum

Vision KL 
Divergence

Semantic Richness

LiDAR KL 
Divergence

Geometric Reliability



Outline
● Proposed Framework

○ Vision Module

○ LiDAR Module

○ Consistency Monitoring and Sensor Fusion

● Experiments
○ Virtual KITTI dataset setup
○ Key experimental parameters, metrics and baselines

● Key Results 
○ Selected change detection accuracy results for individual sensor 

modalities

○ Selected sensor fusion results on adverse weather conditions
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Virtual KITTI Dataset[10]
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• Pixel-level ground truth
• Stress-test in controlled conditions
• Multiple object categories
• Several sequences for fair evaluation

Modification
Objects removed 
programmatically to simulate 
map-change
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Baselines and Metrics
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Baselines Metrics

KL divergence[8] (↓)

v.s. ground-truth 
change map

Pearson 
correlation[13] (↑)

spatial agreement

CLIP[11] : Patch-difference change 

maps using ViT-B/32 embeddings.

LoFTR[12] : Dense local feature 

matching with transformer

Jaccard Distance[14]: Voxel 

overlap metric for LiDAR maps

Fusion: Weighted Sum of Vision and 

LiDAR Scores

Local Feature Transformer 

Contrastive Language-Image Pretraining



Evaluation Questions
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How accurately can each individual modality detect semantic changes in 
the map under normal and degraded conditions?

How well do the predicted anomaly distributions align with ground-truth 
changes induced by simulated infrastructure removal?

Can fusing information from Vision and LiDAR improve map-change 
detection in diverse conditions?



Outline
● Proposed Framework

○ Vision Module

○ LiDAR Module

○ Consistency Monitoring and Sensor Fusion

● Experiments
○ Virtual KITTI dataset setup
○ Key experimental parameters, metrics and baselines

● Key Results 
○ Selected change detection accuracy results for individual sensor 

modalities

○ Selected sensor fusion results on adverse weather conditions
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Vision-Only Alignment with Ground-Truth Changes

DINOv2 + segmentation captures semantic differences from missing or 
changed infrastructure.
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Per-Modality Accuracy in Detecting Semantic Changes

Our Vision Module method achieves 95% overall True Positive Rate vs. 
~60 – 75% for baselines.

Category Ours CLIP[11] LoFTR[12]

Building 84.8 60.3 55.4

Traffic Light 83.9 60.4 50.8

Traffic Sign 81.6 60.4 48.1

Overall 95.0 75.0 63.8
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Per-Modality Accuracy in Detecting Semantic Changes

Our LiDAR Module method shows KL divergence peaks fairly aligning 
with true map changes. 

Point Cloud 
KLD

True Map 
Change

Frame Index

K
L
 D

iv
e

rg
e
n
ce

Frame Index

#
 P

ix
e
ls

 C
h
a

n
g
e
d

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200 250

200 250150100500

0

20k

40k

60k

0

20k

10k

30k

40k

50k

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.015

-0.010

-0.005

0

0.005

0.010



[8] Kullback, S., & Leibler, R. A. The Annals of Mathematical Statistics  [11] Radford, A., et al. ICML [12] Sun, J., et al. CVPR  [13] Pearson, K., 1896  [14] Jaccard, 1901 22

Fusion Preserves Robustness in Adverse Conditions

Our fusion method maintains strong alignment with ground truth under 
rain and fog, while baselines degrade sharply.

Ours CLIP[11] + 
Jaccard

[14]

LoFTR[12]

+ 
Jaccard

[14]

KL 
Divergenc

e[8] (↓)

0.11 0.63 0.52

Pearson 
Corr.[13] (↑)

0.72 0.38 0.15

Ours CLIP[11] + 
Jaccard

[14]

LoFTR[12]

+ 
Jaccard

[14]

KL 
Divergenc

e[8] (↓)

0.13 0.89 0.73

Pearson 
Corr.[13] (↑)

0.68 0.37 0.26

Normal 

Condition

Rainy 

Condition
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Conclusion

• Our sensor fusion framework with KL divergence-based scoring 
achieves high performance under normal conditions and maintains it in 
adverse weather. 

• Real-time anomaly detection with spatial heatmaps can provide 
autonomous systems with change alerts and accurate localization, 
addressing the critical gap between static maps and dynamic urban 
environments for safer navigation.

• The integration of large vision-language models can enable the 
detection of novel infrastructure changes without requiring retraining.
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