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Abstract

Foundation vision models show strong open-vocabulary
performance in segmentation and detection, yet robotics
applications demand reliable uncertainty estimation for
safe deployment. We study split conformal prediction on
CLIPSeg and Grounding DINO, demonstrating statistically
valid coverage without retraining. Evaluations on the
KITTI dataset under normal and adverse weather indicate
that conformal prediction provides dependable coverage
for semantic segmentation, while object detection remains
more challenging, highlighting the need for task-aware con-
formity designs in robotic perception systems.

1. Introduction

Recent foundation vision models have advanced robotic
perception by enabling open-vocabulary understanding via
large-scale pretraining [8, 14]. CLIPSeg [10] and Ground-
ing DINO [9] generalize to semantic segmentation and ob-
ject detection through zero-shot and few-shot transfer. For
safety-critical robotic systems, deployment requires uncer-
tainty quantification with statistically valid guarantees.

Classical approaches—Bayesian neural networks [3],
ensembles [7], and test-time augmentation [18]—yield ap-
proximate confidence but lack formal guarantees and may
scale poorly. Calibration methods [4, 6] improve consis-
tency yet do not capture epistemic uncertainty or provide
coverage control.

Conformal prediction [15, 17] offers distribution-free,
finite-sample coverage without retraining, using conformity
scores from a held-out calibration set [12]. It shows promise
in classification [1], segmentation [16], and detection [2],
but open-vocabulary applications remain limited. These
settings introduce semantic ambiguity, concept drift, and
unbounded label spaces [13]. Prior work studies robust-
ness [5] and calibration [11] in vision-language models, but
uncertainty quantification is still underexplored.

We apply split conformal prediction to CLIPSeg and
Grounding DINO for open-vocabulary robotic perception.
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We design pixel- and object-level conformity scores, evalu-
ate on KITTI under normal and adverse weather, and com-
pare inference strategies. Results show reliable segmenta-
tion coverage, while detection is harder, motivating task-
aware conformity for robotic vision.

2. Methods

We develop a training-free selective prediction mechanism
that, given an image, outputs prediction sets guaranteed to
include the ground-truth label with user-specified probabil-
ity 1 — .. We adopt the split conformal prediction (split-
CP) framework [12], which computes a threshold ¢, on a
held-out calibration set and applies it to test data to ensure
finite-sample validity. We use o € {0.20,0.10,0.05}, cor-
responding to target coverage of 80%, 90%, and 95%. The
foundation models remain frozen, allowing conformal pre-
diction to be applied directly without retraining—an essen-
tial property for robotic deployment.

We evaluate two open-vocabulary vision models:
CLIPSeg [10] for semantic segmentation and Grounding
DINO [9] for object detection. CLIPSeg generates per-
prompt logit maps L.(x) € RF*W  normalized to pixel-
wise class probabilities, while Grounding DINO predicts
bounding boxes b; € R%, class logits ¢;, and confidence
scores s; € [0, 1] using a transformer-based detection back-
bone. All evaluations are performed on the pre-trained
checkpoints under normal and adverse KITTI weather con-
ditions.

2.1. Uncertainty Estimation Baselines

We study several inference-time strategies without modi-
fying weights: (1) Vanilla, a single deterministic forward
pass; (2) Test-Time Augmentation (TTA), applying geo-
metric transformations (M = 8 rotations and flips) to es-
timate aleatoric uncertainty; and (3) Hybrid, combining
original and flipped passes to balance diversity and cost.
For CLIPSeg, pixel-wise probabilities are averaged across
passes; for Grounding DINO, predictions are merged using
per-class non-maximum suppression (NMS).



2.2. Conformity Score Design

We design conformity scores that increase monotonically
with uncertainty, enabling a consistent accept/reject rule
based on ¢,.

Segmentation. For pixel-wise class probabilities p(x) €
A~ we use the entropy-based score:

¢ent = _Z pc

which measures uncertainty across classes, with higher val-
ues indicating less confident predictions.

Detection. For each ground-truth object g with label y,,
we compute the best-match confidence:

z) log pe(x), D
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7=0.5, 2)
and define ¢g(g) = 1 — 1 (g) so that larger values corre-
spond to higher uncertainty. When no prediction matches g,

¥(g)=0.
2.3. Split Conformal Procedure

Given calibration scores {¢$} from the held-out split, we
compute:

Go = Quantﬂehlgher({d)cal}) (3)

ensuring valid finite-sample coverage [17]. During infer-
ence, a prediction is accepted if its score ¢(x) < g, and
abstained otherwise. For segmentation, this retains pixels
with sufficiently low entropy; for detection, it filters objects
with low confidence. Under the exchangeability assump-
tion between calibration and test sets, the probability that
the ground truth lies within the returned prediction set is at
least 1 —q, providing statistically valid reliability for robotic
perception.

3. Experiments and Results

We evaluate selective coverage and reliability under normal
and adverse weather on KITTI for both segmentation and
detection. Coverage measures the fraction of pixels (seg-
mentation) or ground-truth objects (detection) with a non-
empty prediction set. A prediction is considered covered
if its conformity score is below the calibrated threshold ¢,,.
When exchangeability holds, observed coverage should ap-
proximate the nominal level 1 — «. We further report the
Area Under the Risk—Coverage Curve (AURC) to quantify
the tradeoff between abstention and accuracy.

A single global threshold ¢, is computed for each infer-
ence mode (Vanilla, TTA, Hybrid) using the calibration split
and then applied to the test set. Quantiles use the “higher”
rule to guarantee coverage, and the same protocol is re-
peated under adverse weather conditions.

Baseline q80% q90% Q95%
Vanilla 0.2104 0.2481 0.2847
TTA 0.2091 0.2270 0.2446
Hybrid 0.2108 0.2407 0.2695
Baseline Cov@80% Cov@90% Cov@95%
Vanilla 0.7995 0.8984 0.9474
TTA 0.7902 0.9000 0.9514
Hybrid 0.7927 0.8951 0.9479

Table 1. CLIPSeg conformal prediction on KITTI (semantic seg-
mentation) using entropy as the conformity score. Observed cov-
erage matches nominal targets, with TTA achieving slightly lower
AURC and better robustness under domain shift.

Baseline Cov@80% Cov@90% Cov@95%
Vanilla 0.601 0.672 0.704
TTA 0.620 0.695 0.726
Hybrid 0.623 0.698 0.729

Table 2. Grounding DINO conformal coverage on KITTI under
normal conditions. Detection coverage remains below segmenta-
tion but improves under Hybrid inference.

Overall risk—coverage trends align with the quantitative
results, showing consistent calibration for segmentation and
lower coverage for detection.

For semantic segmentation, conformal prediction main-
tains near-nominal coverage across all « levels. TTA pro-
vides the lowest AURC and the most stable thresholds under
both normal and adverse weather, indicating reliable cali-
bration for pixel-level uncertainty. Hybrid inference further
improves coverage for small dynamic classes while remain-
ing computationally efficient.

For object detection, Grounding DINO achieves lower
overall coverage due to compounded localization and clas-
sification uncertainty. Hybrid inference slightly improves
reliability compared to the deterministic baseline. Despite
the remaining gap to nominal levels, conformal prediction
provides interpretable coverage control, a useful property
for safety-critical robotic perception systems.

4. Discussion

This study demonstrates the use of conformal prediction for
open-vocabulary foundation models in robotic perception.
CLIPSeg provides reliable pixel-level coverage, while de-
tection with Grounding DINO remains less calibrated due
to joint localization—classification uncertainty. These find-
ings suggest that task-aware conformity and structured un-
certainty measures are essential for extending conformal
prediction to complex robotic vision tasks.
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