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I. INTRODUCTION

Hyperparameter tuning is essential for maximizing the per-
formance of machine learning models. However, traditional
strategies such as grid search and random search are often
inefficient, particularly in high-dimensional or computationally
expensive settings. Bayesian Optimization (BO) provides a
sample-efficient framework by modeling the objective function
with a probabilistic surrogate and guiding the search using an
acquisition function [1]. In this work, we evaluate the perfor-
mance of two widely used acquisition functions—Expected
Improvement (EI) and Upper Confidence Bound (UCB)—and
introduce a custom scalarized multi-objective acquisition func-
tion. We benchmark these methods on two classification
tasks using Support Vector Machines (SVM) and a one-layer
Convolutional Neural Network (CNN).

II. RELATED WORK

Bayesian Optimization (BO) has been widely adopted for
hyperparameter tuning due to its efficiency in black-box and
costly evaluation settings [2]. Common acquisition functions
such as Expected Improvement (EI) and Upper Confidence
Bound (UCB) are extensively studied for their respective
strengths in exploitation and exploration [1]. Recent works
explore the trade-offs between these strategies and propose
hybrid or scalarized approaches to improve robustness across
diverse tasks [3]. Multi-objective BO has also gained attention
in applications requiring optimization over conflicting criteria
such as accuracy and inference latency [4]. Our work builds
upon these foundations by designing a scalarized UCB acqui-
sition function that explicitly balances validation accuracy and
latency. We evaluate this method in comparison to EI and UCB
using two representative classifiers—SVM and CNN—on a
real-world classification task. This extends prior work by
integrating performance and computational efficiency into a
unified acquisition strategy for practical model selection.

III. METHODOLOGY

A. Candidate Models

To probe the effect of the acquisition strategy across model
families, we tune one deep-learning model and one shallow
kernel model:

• 1-Layer Convolutional Neural Network (CNN). Search
space: learning rate, dropout, and filters.

• Support Vector Machine with RBF kernel (SVM–RBF).
Search space: C – controller of the regularization strength.

B. Bayesian Optimization Protocol

Hyper-parameter search is conducted with
scikit-optimize’s gp_minimize API, which couples
a Gaussian-process surrogate with a selectable acquisition
rule [5].

1) Surrogate GP: Squared-exponential (ARD) kernel with
automatic noise estimation.

2) Budget: 20 BO evaluations per run; the first 5 points are
drawn uniformly at random to prime the GP.

3) Acquisition Functions:
a) Expected Improvement (EI): baseline

exploitation-oriented rule;
b) Lower Confidence Bound (LCB): UCB variant that

trades off mean and uncertainty;
c) Scalarized-UCB (SUCB, ours): multi-objective ex-

tension a(x) = w⊤µ(x) +
√
β
√
w⊤Σ(x)w, bal-

ancing validation error and GPU latency.
4) Evaluation Metric: Primary objective is test accuracy;

latency is logged for Pareto analysis.
5) Diagnostics: For each trial we record accuracy,

wall-clock latency (ms per batch on a Colab T4 GPU),
best-so-far convergence, and variability over 5 indepen-
dent BO runs.

IV. PHASE-1 EXPERIMENT: TOY-FUNCTION SANITY
CHECK

A. GP Surrogate

We place a zero–mean Gaussian–process prior on the un-
known objective f : R→R,

f(x) ∼ GP
(
0, k(x, x′)

)
, k=σ2

f kMatérn (ν=2.5,ℓ). (1)

After t observations Dt = {(xi, yi)}ti=1 (with i.i.d. Gaussian
noise σ2

n), the predictive mean and variance are the usual
closed forms:

µt(x) = k⊤t
(
Kt + σ2

nI
)−1

yt, (2)

σ2
t (x) = k(x, x)− k⊤t

(
Kt + σ2

nI
)−1

kt. (3)



Fig. 1: Phase-1 diagnostics on the damped-cosine benchmark
using EI after 57 iterations. Stars mark sampled points.

B. Acquisition Rules

We benchmark two classics and our forthcoming variant in
Sec. III. Here we recall the baselines only:

EIt(x) = E
[
max{0, f(x)− f⋆

t − ξ}
]
, (4)

UCBt(x) = µt(x) + κσt(x), (5)

with ξ=0.1 and κ=2.576 (≈99% c.i.) [2].

C. Experimental Setup

We adopt the standard 1-D damped-oscillation test
f(x) = e−x cos(2πx) on x ∈ [0, 10], featuring a global op-
timum at x = 0 and nine diminishing local peaks. The budget
is T = 20 BO iterations, boot-strapped by n0 = 4 uniformly
random points. At each step the acquisition maximizer is
computed on a 200-point grid. Kernel hyper-parameters are
fixed (ℓ = 1, σ2

f = 1, σ2
n = 10−2) to isolate acquisition effects.

D. Results

Fig. 1 and Fig. 2 overlays acquisition curves and sample
locations at t ∈ {0, 2, 5, 10, 20}; the learning curves are
summarized in the inset.
Global-mode discovery. Both EI and UCB pick the global
maximum (x = 0) immediately after the initial design. EI
does so via its first non-flat bump at t = 2; UCB selects it
because µ0 + κσ0 already peaks there.
Exploration–exploitation contrast. EI’s magnitude drops
three orders in the first 50 % of iterations, focusing almost
exclusively on the discovered basin and deferring exploration
of secondary peaks until late. UCB maintains a higher base-
line, cycling through all remaining lobes and thus providing
near-uniform coverage (but slower local refinement).
Acquisition scale. At t = 20 we observe maxx ̸=0 UCB ≈
0.39 versus EI < 10−3 everywhere, quantifying EI’s aggres-
sive exploitation.
Take-away. For objectives with a single dominant mode, EI
converges faster; when multiple comparably attractive maxima
exist, UCB’s balanced criterion is preferable. This motivates
our Scalarized-UCB—designed to inherit UCB’s coverage
while injecting a controllable bias toward a user-defined ob-
jective vector—examined on real hyper-parameter surfaces in
Sec. III.

Fig. 2: Phase-1 diagnostics on the damped-cosine benchmark
using UCB after 57 iterations. Stars mark sampled points.

V. PHASE-2 EXPERIMENT: SCALARIZED-UCB ON REAL
HYPER-PARAMETER SURFACES

Phase-1 showed that UCB offers global coverage while EI
exploits aggressively. Real hyper-parameter tuning, however,
is multi–objective: we seek high accuracy and low run-time.
We therefore build a scalarized variant of UCB that allows the
practitioner to steer the exploration bias via a weight vector w.

A. Scalarized Upper-Confidence Bound

For a GP surrogate with predictive mean µt(x) ∈Rm and
covariance Σt(x)∈Rm×m over m objectives, we define

αSUCB
t (x) = w⊤µt(x)︸ ︷︷ ︸

scalarized mean

+
√
β
√

w⊤Σt(x)w︸ ︷︷ ︸
scalarized std. dev.

, (6)

with w ≥ 0, ∥w∥1 = 1 and a tunable exploration scale β.
Setting w = ( 12 ,

1
2 ) balances test-error and latency in the same

units after z-score normalization, while β = 0.1 yields the 95
% empirical c.i. used by .

B. Experimental Protocol

a) Dataset and Models.: We revisit the UCI Red-Wine
dataset (4 489 samples, balanced) and tune two classifiers:
SVM-RBF (C∈ [10−3, 103], γ∈ [10−4, 10]) and a 1-layer CNN
(learning-rate, dropout, filters∈ {16, 32, 64}) [6] [7].

b) Bayesian Optimization engine.: We employ the
Ax+BoTorch stack with an ARD-RBF GP surrogate
and qNoisyExpectedHypervolumeImprovement for
multi-objective normalization. Each run consumes 5 Sobol
initial points + 15 BO iterations; every setting is repeated over
10 random seeds.

c) Objectives: : Validation error (to be minimized) and
GPU latency on a Colab T4 (ms/batch). Both are standard-
ized online; SUCB then operates on the weighted sum (6).
Baselines are EI and (plain) UCB (κ=2.576).

C. Results

Fig. 3 reports the mean best-so-far accuracy ±1 sd across
seeds; Fig. 4 plots the final Pareto frontier (accuracy vs.
latency).

• Faster convergence. SUCB reaches within 99 % of the
final CNN accuracy after 7 BO calls versus 10 (UCB)
and 12 (EI); on SVM the gap is 2–3 calls.

• Improved trade-off. The SUCB frontier dominates EI
and UCB: at equal latency the accuracy gain is +0.3



Fig. 3: Phase-2 performance: best-so-far accuracy.

Fig. 4: Phase-2 performance: accuracy–latency frontier (10-run
mean).

pp (CNN) and +0.2 pp (SVM); conversely, for matched
accuracy SUCB reduces latency by 8 %.

D. Discussion

SUCB inherits the global exploration of UCB yet biases
sampling toward the joint optimum defined by w. Crucially,
no extra hyper-parameters beyond β are introduced, and β
shows low sensitivity in the range 0.05–0.2. The gains are
consistent on both a large-margin model (SVM) and a small
CNN, which suggests that scalarization is a practical drop-in
upgrade for multi-objective hyper-parameter tuning.

VI. CONTRIBUTION

Bob Gao and Jerry Li jointly conducted the Phase 1
experiments, evaluating the general performance of EI and
UCB on a synthetic damping function. Bob Zeng implemented
the SVM classifier and benchmarked the performance of EI
and UCB on the Wine Quality classification task. Patrick Liu
developed the custom scalarized UCB acquisition function and
conducted its evaluation using both CNN and SVM models,
comparing its performance against EI and UCB on the same
dataset.
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APPENDIX

(a) Iteration 1 (EI) (b) Iteration 2 (EI) (c) Iteration 4 (EI)

(d) Iteration 7 (EI) (e) Iteration 27 (EI) (f) Iteration 33 (EI)

(g) Iteration 50 (EI) (h) Iteration 51 (EI) (i) Iteration 52 (EI)

(j) Iteration 57 (EI) (k) Iteration 6 (UCB) (l) Iteration 17 (UCB)

(m) Iteration 61 (UCB) (n) UCB Overview (o) Iteration 86 (UCB)

(p) Iteration 57 (UCB)

Fig. 5: Snapshots of EI and UCB acquisition functions (red dots = sampled points, green curve = acquisition) at key iterations.
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