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Abstract

Foundation vision models have demonstrated remarkable
capabilities in open-vocabulary semantic segmentation and
object detection tasks. However, their deployment in safety-
critical applications requires robust uncertainty quantifica-
tion algorithms. We present an initial study of conformal
prediction applied to CLIPSeg and Grounding DINO, two
state-of-the-art open-vocabulary models. Our approach
uses split conformal prediction to provide statistically valid
prediction sets with user-specified coverage guarantees. We
evaluate multiple uncertainty estimation baselines, includ-
ing Monte Carlo dropout, test-time augmentation, and hy-
brid approaches across normal and adverse weather con-
ditions on the KITTI dataset. Our results demonstrate
that conformal prediction can successfully provide cover-
age guarantees for semantic segmentation, whereas object
detection presents additional challenges requiring further
improved conformity score designs.

1. Introduction
The rapid advancement of foundation vision models has
revolutionized computer vision, enabling unified architec-
tures trained on massive datasets to perform remarkably
well across diverse tasks [8, 14]. Notably, models like
CLIPSeg [10] and Grounding DINO [9] have demonstrated
strong open-vocabulary generalization in semantic segmen-
tation and object detection, respectively, through zero-shot
and few-shot capabilities. However, deploying these pow-
erful models in safety-critical domains requires rigorous
uncertainty quantification with statistically valid reliability
guarantees.

Traditional uncertainty quantification methods, includ-
ing Bayesian neural networks [3], ensemble techniques [7],
and test-time augmentation [18], provide approximate con-
fidence estimates but often suffer from scalability limita-
tions or lack formal guarantees. Calibration methods [4, 6]
offer post-hoc corrections but do not address the underlying
epistemic uncertainty or provide coverage guarantees.

Conformal prediction [15, 17] presents a compelling al-
ternative by providing finite-sample coverage guarantees in
a distribution-free manner and without requiring retraining.
Using conformity scores derived from a held-out calibra-
tion set [12], this framework has shown promise in classifi-
cation [1], segmentation [16], and detection [2]. However,
applications to open-vocabulary settings remain relatively
nascent. These scenarios introduce unique challenges: se-
mantic ambiguity, concept drift, and the open-ended nature
of the label space [13]. While recent work has explored ro-
bustness [5] and calibration [11] in vision-language models,
few have tackled uncertainty quantification in this setting.

In this work, we address this gap by adapting split con-
formal prediction to two open-vocabulary foundation mod-
els. We design novel conformity scores tailored to pixel-
level and object-level outputs, benchmark them under both
normal and adverse weather conditions, and compare their
performance across multiple baselines. Our experiments on
the KITTI dataset reveal that conformal prediction provides
reliable coverage in segmentation tasks but struggles with
detection, where localization and label matching further
complicate uncertainty estimation, highlighting the need for
more structured, task-aware conformity designs.

2. Methods
We develop a selective prediction mechanism that, given an
input image, returns prediction sets containing the ground-
truth label with user-specified probability 1−α for each spa-
tial location (semantic segmentation) or object instance (de-
tection). We employ α ∈ {0.20, 0.10, 0.05}, corresponding
to target coverage levels of 80%, 90%, and 95%, respec-
tively. We adopt the split conformal prediction (split-CP)
paradigm [12], which leverages a held-out calibration sub-
set to determine a scalar threshold qα. This threshold is then
applied uniformly to the test split, ensuring finite-sample
validity guarantees. Crucially, our procedure is training-
free: the foundation models remain frozen throughout the
entire process, making our approach directly applicable
to existing pre-trained models without requiring additional
computational resources for retraining.



We evaluate our method on two state-of-the-art open-
vocabulary foundation models without any fine-tuning.
CLIPSeg [10] performs open-vocabulary semantic seg-
mentation by generating per-prompt logit maps Lc(x) ∈
RH×W , which are softmax-normalized across prompts to
yield pixel-wise class probabilities. Grounding DINO [9]
performs open-vocabulary object detection by predicting
bounding boxes bi ∈ R4, class logits ℓi ∈ RC , and
confidence scores si ∈ [0, 1]. This model leverages a
transformer-based architecture to unify object detection
with phrase grounding in natural language. All evaluations
are conducted using the original pre-trained models to as-
sess out-of-the-box performance.

2.1. Uncertainty Estimation Baselines
We evaluate four test-time inference strategies to study their
impact on conformal prediction without modifying model
weights: (1) Vanilla uses a single forward pass as the de-
terministic baseline; (2) Monte Carlo (MC)-Dropout [3]
enables dropout at test time with N = 10 stochastic passes
to estimate epistemic uncertainty; (3) Test-Time Augmen-
tation (TTA) applies M = 8 geometric augmentations (ro-
tations, flip, identity) to model aleatoric uncertainty; and (4)
Hybrid combines 5 original and 5 flipped passes for a bal-
ance of diversity and cost. For CLIPSeg, pixel-wise prob-
abilities are averaged across passes; for Grounding DINO,
predictions are merged via per-class NMS.

2.2. Conformity Score Design
We design scores that monotonically increase with predic-
tion uncertainty, enabling consistent acceptance rules where
predictions are retained only when their conformity score is
at most qα.

2.2.1. Segmentation Conformity Scores
For pixel-wise predictions, let p(x) ∈ ∆C−1 denote the
class probability distribution at spatial location x. We evalu-
ate entropy score as an uncertainty measure which is defined
as:

ϕent(x) = −
C∑

c=1

pc(x) log pc(x) (1)

This measure captures overall prediction uncertainty, with
larger values indicating greater ambiguity across all classes.

2.2.2. Detection Conformity Scores
Object detection presents additional complexity due to the
joint requirements of accurate localization and classifica-
tion. For each ground-truth object g with class label yg ,
we define a best-match confidence by searching across all
predicted bounding boxes (bi, si, ŷi):

ψ(g) = max
i:IoU(bi,g)≥τ∧(ŷi=yg if label matching enabled)

si (2)

where τ = 0.5 represents the IoU threshold for spatial over-
lap. When no prediction satisfies the matching criteria, we
set ψ(g) = 0. Higher ψ values indicate more confident
matches between predictions and ground truth. To maintain
consistency with our acceptance rule, we apply the mono-
tone transformation ϕdet(g) = 1 − ψ(g), ensuring that un-
certain predictions yield high conformity scores.

2.3. Split Conformal Prediction Procedure
Our implementation follows the standard split conformal
prediction protocol [17]. Given conformity scores ϕcal

i cal-
culated in the calibration split, representing pixels for seg-
mentation or ground-truth objects for detection, we deter-
mine the decision threshold as:

qα = Quantilehigher
1−α (ϕcal

i ) (3)

The higher quantile rule ensures finite-sample coverage
guarantees by selecting the smallest threshold that satisfies
the coverage requirement.

During test-time inference, our selective mechanism op-
erates as follows: for segmentation, we return the single-
ton prediction argmaxc pc(x) at pixel x if and only if
ϕ(x) ≤ qα; for detection, we retain object g if and only
if ϕdet(g) ≤ qα. When the conformity score exceeds the
threshold, the mechanism abstains from making a predic-
tion. Under the standard exchangeability assumption be-
tween calibration and test distributions, this procedure guar-
antees that the probability of the ground-truth label being in-
cluded in the returned prediction set is at least 1−α, provid-
ing formal statistical validity for our selective predictions.

3. Experiments and Results
We evaluate both selective coverage and reliability under
normal weather and adverse conditions for segmentation
and detection. Coverage refers to the fraction of test pixels
(segmentation) or ground-truth objects (detection) where
a non-empty prediction set is returned. In detection, a
ground-truth object is considered covered if at least one pre-
dicted box has IoU ≥ τ (default τ=0.5) and, unless noted
otherwise, a matching class label. When exchangeability
holds, observed coverage should approximate the nomi-
nal level 1−α. Additionally, we compute the Area Under
the Risk–Coverage Curve (AURC), which summarizes the
tradeoff between abstention and reliability by plotting error
rate (risk) versus coverage under varying thresholds.

We compute a global threshold qα for each inference
mode (Vanilla, MC-Dropout, TTA, Hybrid) using the cal-
ibration set, then evaluate fixed thresholds on the test split.
MC and TTA outputs are aggregated as described in §2.1.
Quantiles are computed using the “higher” rule to ensure
coverage. Adverse weather tests follow the same protocol
to assess generalization.



Figure 1. Risk-Coverage Curves for semantic segmentation (CLIPSeg) and object detection (Grounding DINO) across normal (top) and
adverse weather (bottom) KITTI conditions. Lower risk at higher coverage indicates better calibration. For segmentation, TTA achieves
consistently lower risk, while in object detection, MC-Dropout significantly underperforms, and Hybrid offers improved tradeoffs under
adverse conditions

Figure 1 illustrates the risk-coverage trade-offs for
CLIPSeg and Grounding DINO across normal and ad-
verse weather scenarios. For semantic segmentation with
CLIPSeg, the results strongly favor TTA as the most ef-
fective uncertainty-aware inference strategy. It consistently
yields the lowest AURC which shows high selective re-
liability. At α = 0.05, TTA achieves a coverage of
95.14 % under normal conditions and 95.45 % under ad-
verse weather, both within 0.5 % of the nominal target,
and with the lowest corresponding entropy threshold. The
Hybrid method also shows improvement over Vanilla and
MC-Dropout, particularly under domain shift. Notably, it
achieves the highest static class coverage at α = 0.05, with
dynamic class coverage of 82.15 %, reflecting a balanced
handling of both large background regions and smaller fore-
ground objects. In contrast, MC-Dropout while replicating
Vanilla’s behavior in segmentation due to shared dropout
masks, fails to provide additional benefits in this context.
Across all tested methods, segmentation consistently shows
higher conformity than detection, with robust coverage even
under adverse conditions.

Baseline q80% q90% q95%

Vanilla 0.2104 0.2481 0.2847
MC-Dropout 0.2104 0.2481 0.2847
TTA 0.2091 0.2270 0.2446
Hybrid 0.2108 0.2407 0.2695

Baseline Cov@80% Cov@90% Cov@95%

Vanilla 0.7995 0.8984 0.9474
MC-Dropout 0.7995 0.8984 0.9474
TTA 0.7902 0.9000 0.9514
Hybrid 0.7927 0.8951 0.9479

Table 1. CLIPSeg conformal prediction results on KITTI (seman-
tic segmentation) using entropy as the conformity score. The table
shows both the threshold values (qα) and observed coverage for
target coverage levels 1− α ∈ {0.80, 0.90, 0.95}.

However, the static–dynamic split reveals persistent cal-
ibration gaps: at α = 0.10, dynamic object coverage for
Vanilla and MC-Dropout remains under 60 %, while TTA
and Hybrid exceed 70 %, underscoring their improved han-



Baseline q80% q90% q95%

Vanilla 0.2134 0.2514 0.2863
MC-Dropout 0.2134 0.2514 0.2863
TTA 0.2126 0.2309 0.2490
Hybrid 0.2148 0.2442 0.2715

Baseline Cov@80% Cov@90% Cov@95%

Vanilla 0.7972 0.8965 0.9454
MC-Dropout 0.7972 0.8965 0.9454
TTA 0.7891 0.9002 0.9545
Hybrid 0.7944 0.8969 0.9474

Table 2. CLIPSeg conformal prediction results on KITTI Ad-
verse Weather (semantic segmentation) using entropy as the con-
formity score. The table reports both the threshold values (qα)
and the observed coverage for target coverage levels 1 − α ∈
{0.80, 0.90, 0.95}.

dling of epistemic uncertainty in fine-grained object classes.

Baseline α Static Cov. Dynamic Cov. AURC

Vanilla 0.20 0.7793 0.3625 0.8920
Vanilla 0.10 0.8980 0.5791 0.8920
Vanilla 0.05 0.9484 0.7453 0.8920
MC-Dropout 0.20 0.7793 0.3625 0.8920
MC-Dropout 0.10 0.8980 0.5791 0.8920
MC-Dropout 0.05 0.9484 0.7453 0.8920
TTA 0.20 0.7951 0.4539 0.8339
TTA 0.10 0.8979 0.7240 0.8339
TTA 0.05 0.9481 0.8395 0.8339
Hybrid 0.20 0.8430 0.4459 0.8823
Hybrid 0.10 0.9220 0.7067 0.8823
Hybrid 0.05 0.9559 0.8215 0.8823

Table 3. CLIPSeg conformal prediction summary on KITTI (nor-
mal weather). The table reports static and dynamic pixel coverage
and AURC values for different miscoverage levels.

In contrast, object detection with Grounding DINO
presents a more difficult challenge. The risk coverage
curves remain flat, especially in TTA and Hybrid, which
fail to cover dynamic objects at any α level. The Hybrid
strategy marginally improves detection performance over
Vanilla, reaching 69.47 % coverage at α = 0.10 under nor-
mal weather. MC-Dropout shows the highest dynamic cov-
erage under adverse conditions, at the cost of poor risk cal-
ibration, as reflected in the increased AURC values, which
suggest that it lacks precision in abstention, often retain-
ing low-quality boxes. Moreover, detection coverage re-
mains systematically below the target: even the best per-
forming MC-Dropout baseline falls by nearly 10 %. This
result shows the difficulty of conformal prediction in detec-
tion tasks, where both localization and classification accu-

Dataset Baseline Cov@80% Cov@90% Cov@95%

Normal

Vanilla 0.6014 0.6717 0.7040
MC-Dropout 0.6948 0.7752 0.8130
TTA 0.6203 0.6947 0.7263
Hybrid 0.6203 0.6947 0.7263

Adverse

Vanilla 0.5811 0.6530 0.6893
MC-Dropout 0.6866 0.7683 0.8082
TTA 0.6001 0.6775 0.7116
Hybrid 0.6001 0.6775 0.7116

Table 4. Grounding DINO conformal prediction coverage on
the KITTI dataset under normal and adverse weather conditions.
The table reports observed coverage for target levels 1 − α ∈
{0.80, 0.90, 0.95}.

Dataset Baseline α Dynamic Cov. AURC

Normal

Vanilla 0.20 0.4334 0.4804
Vanilla 0.10 0.4855 0.4804
Vanilla 0.05 0.5179 0.4804
MC-Dropout 0.20 0.4658 0.9043
MC-Dropout 0.10 0.5440 0.9043
MC-Dropout 0.05 0.6006 0.9043
Hybrid 0.20 0.4540 0.5219
Hybrid 0.10 0.5199 0.5219
Hybrid 0.05 0.5521 0.5219

Adverse

Vanilla 0.20 0.4042 0.4549
Vanilla 0.10 0.4675 0.4549
Vanilla 0.05 0.4948 0.4549
MC-Dropout 0.20 0.4586 0.9010
MC-Dropout 0.10 0.5521 0.9010
MC-Dropout 0.05 0.6022 0.9010
Hybrid 0.20 0.4238 0.4948
Hybrid 0.10 0.4984 0.4948
Hybrid 0.05 0.5272 0.4948

Table 5. Conformal prediction results for Grounding DINO on
the KITTI dataset under normal and adverse weather conditions.
Static coverage is not applicable to detection. Results for TTA are
excluded due to consistent failure, yielding zero valid predictions.

racy are crucial.

4. Discussion
Our results highlight the novelty of applying conformal pre-
diction to open-vocabulary vision models. While CLIPSeg
readily supports plug-and-play conformal inference due to
its dense outputs, object detection with Grounding DINO
exposes limitations of standard test-time strategies. This un-
derscores the need for task-aware abstention and calibration
methods tailored to detection. Future work should develop
principled uncertainty measures leveraging multi-scale con-
sistency or foundation model priors.
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