A Vision-Based Localization & Path Planning Robot
System for Autonomous Emergency Response

Huaze Liu
Harvey Mudd College
Claremont, USA
hualiu@g.hmc.edu

I. ABSTRACT & INTRODUCTION
A. Motivation & Significance

In the aftermath of natural disasters such as earthquakes
and wildfires, search and rescue teams must navigate unstable,
hazardous environments. This not only endangers human re-
sponders but also delays critical interventions. To address these
challenges, we present a dual-robot framework: an explorer
robot that performs vision-based detection and localization,
aiming for rapid information collection of victims; and a
rescuer robot that computes and follows efficient, safe paths to
each detected target. The explorer is designed to be lightweight
and precise, using HSV-based object detection, PD control,
and an State Estimation filter for robust tracking. Upon identi-
fication, it records GPS coordinates and transmits them to the
rescuer, which then applies A* path planning to reach each
victim. By automating detection, localization, and navigation,
our approach reduces human risk and accelerates rescue op-
erations while maintaining sub-meter targeting accuracy.

B. Related Work

Over the past decade, there has been significant interest in
rescue robots, leading to numerous innovative developments
in areas such as SLAM, robotic operation, and detection
techniques. In this section, we highlight several closely related
works and discuss relevant comparisons.

In our project, we adopt a computer vision-based approach
that uses a raw RGB camera as the primary input for our search
algorithm. This approach is consistent with the vision-based
strategies outlined by Shahria et al. in their comprehensive
review of robotic applications and system components [1].
Their proposed framework for vision-based systems involves
the following sequence: RGB image acquisition, followed by
image segmentation or filtering, then action planning based
on computational analysis and control, and finally, execution.
This structured pipeline closely mirrors the framework we
implemented throughout our project. In the search phase of
rescue operations, effective navigation is critical—particularly
in low-light or dark environments. Daftry et al. [2] proposed
a robust vision-based system for autonomous night-time navi-
gation and landing using micro aerial vehicles (MAVs). Their
approach utilizes thermal-infrared cameras to reconstruct a
3D map of the target area, allowing for accurate localization

Jessica Liu
Harvey Mudd College
Claremont, USA
jesliu@g.hmc.edu

even in complete darkness. In contrast, our system relies
on a 2D RGB camera, which reduces hardware complexity
and computational demands but depends on adequate light-
ing conditions. While this design supports lightweight and
cost-efficient deployment, it limits applicability in real-world
scenarios where lighting may be unpredictable or insufficient.
However, our goal for the final project is to proposed a possible
framework.

Many studies on rescue robotics explore various modes
of operation. One commonly adopted system is air-ground
collaboration, which combines aerial drones and ground robots
to carry out coordinated tasks. For instance, a 2024 study titled
Air-Ground Collaborative Robots for Fire and Rescue Mis-
sions: Towards Mapping and Navigation Perspective presents
an innovative approach to air-ground rescue operations [3].
This is closely aligned with our project, which similarly em-
ploys at least two robots to perform distinct tasks—searching
and rescuing. Aerial robots, such as drones, can perform initial
searches more quickly and efficiently due to their broader
field of view in the air. However, our operation involves two
ground robots. We chose not to include aerial robots because,
in real-world rescue scenarios, drones often face limitations.
For example, they may struggle to enter smoke-filled buildings
or navigate environments with numerous obstacles that block
or restrict their movement. While ground robots are usually
more flexible in searching.

The second major component of our proposed framework
is path planning, with a particular emphasis on the algo-
rithm selection. Both Fransen’s study, “Efficient Path Planning
for Automated Guided Vehicles Using A (Astar) Algorithm
Incorporating Turning Costs in Search Heuristic”* [4], and
Krishnaswamy’s “A Comparison of Efficiency in Pathfinding
Algorithms in Game Development” [5] highlight the A*
algorithm as one of the most efficient and fastest methods
for pathfinding. Given the critical importance of speed and
efficiency in rescue operations, we have chosen to implement
A* as the core algorithm in our final project.

II. METHODOLOGY

Our framework aims to enable a mobile robot to au-
tonomously search for, approach, and sequentially “collect”
multiple target objects within an environment, utilizing vision-
based detection and state estimation for robust control. With

the information of the number of the target objects and their
locations, the second rescue robot will plan an efficient path
to sequentially approach each of them. For this project, we
implement and evaluate this system within the Webots robotics
simulator [[6]. The task involves a single TurtleBot3 Burger
robot equipped with a forward-facing RGB camera and a
GPS sensor operating in a planar arena containing multiple
identical yellow spheres (target objects). This setup allows us
to focus on the core perception, estimation, control, multi-
target sequencing logic, and path planning. This section details
the system architecture, object detection pipeline, the state
estimation filters employed, the control strategy, the logic for
multi-ball collection, and path planning algorithm [T}

Object Motor Record

|—p»-| Detectio |—p Control |—] ob!ss'ct
n position

Camera
Input

—p| Path
Planning

Fig. 1.

System Overview

A. System Architecture Overview

For our first robot, it operates in a continuous loop in-
volving perception, state estimation, decision-making, and
control (summarized in Figure 2] The camera captures images
processed by the Object Detection module to identify yellow
target balls using color thresholding. The primary measure-
ment derived is the horizontal pixel error between the largest
detected ball’s centroid and the camera’s image center.

This noisy measurement is fed into State Estimation Filters.
In this project, we examine and test two commonly-used
filters: Extended Kalman Filter (EKF) [7] and Unscented
Kalman Filter (UKF) [8]. Both filters estimate the ball’s
tracking state (pixel error, error rate, bearing angle) based on
the visual measurements and a motion model.

The Control & Avoidance Logic uses the filtered state
to generate wheel velocity commands. It incorporates GPS
data to manage multi-ball collection, preventing re-collection
of already visited targets and implementing basic avoidance
of cleared areas during approach maneuvers. A Termination
Condition monitors the time since the last successful collection
to halt the robot when no further targets are found.

For our second robot, the primary task is to receive GPS
data from the first robot and compute the most efficient and
shortest path using a path planning algorithm. In our project,
we have chosen to use A* as the core path planning method.

B. Object Detection Method

Target object (yellow ball) detection utilizes color threshold-
ing in the HSV (Hue, Saturation, Value) color space, known

Robot A Camera Input

r(t)

; %
Object Detection
)
mﬂ

Proportional — Derivative Control

Kalman Filter

Fig. 2. Detection and Localization Framework

for its relative robustness to illumination changes compared
to RGB [9]. The input BGR image from the camera is first
converted to HSV.

We then apply a binary threshold based on experimentally
determined ranges for yellow under the simulation’s lighting
conditions:

1, H(z,y) € [20°,35°],
S(x,y) = 70, V(z,y) 260, (1)
0, otherwise.

M(z,y) =

To mitigate noise resulting from thresholding (e.g., small
erroneous patches or holes in the detected ball mask), morpho-
logical opening followed by closing is applied using a 7 x 7
elliptical structuring element B:

Mopcn - (M S B) S3) Bv Mclcan = (Mopcn © B) e B.

Finally, external contours are extracted from the cleaned binary
mask Mcjean using cv2.findContours. Contours with an
area A less than Ap.;, = 30px are discarded. The centroid
(cz,cy), calculated using image moments (cv2.moments)
of the largest remaining contour, is used. The horizontal pixel
eITOr €meas = C; — (ImageWidth/2) serves as the primary
input measurement for the state estimation filters.

C. State Estimation Filters & Control

To handle measurement noise and provide smoother es-
timates for control, we employ state estimation filters. The
system implements both an EKF and a UKF to drive the
control loop.

1) State Representation: The state vector for both filters is
defined as:
ek
X = ék 5
O

where ey, is the horizontal pixel error from the image center
to the ball’s centroid, é; is its discrete-time rate of change,
and 6y is the estimated bearing angle to the ball relative to
the camera’s optical axis.

2) Motion Model (for the both filters): We assume a simple
constant-velocity model for the pixel error dynamics between
steps, perturbed by noise. The state propagates according to
the linear process model:

Wi ~ N(Ov Q)7

Xp+1 = Fxp + wy,

where At is the simulation timestep, and the state transition
matrix F' and process noise covariance Q are:

1 At 0 001 0 0
F=|0 1 0|, Q=|0 001 0
0 0 1 0 0 0.001

In our case, the process noise Q reflects assumed small
uncertainties in the velocity and angle dynamics between
timesteps.

3) Measurement Model (for the both filters): The measure-
ment vector consists of the directly observed pixel error and
the bearing angle calculated from it:

Z — €meas Nh(X)-l—V _ €L +v
T | Opens | k k= arctan(ey/ f) ks
where v ~ N(0,R), f is the camera’s focal length (77.25

pixels), and R is the measurement noise covariance:

100 0
R= { 0 0.01] '

In our case, the measurement noise R assumes higher
variance (100) for the direct pixel error measurement due
to detection noise and contour centroid instability, and lower
variance (0.01) for the derived angle measurement.

4) Extended Kalman Filter: The EKF handles the non-
linear arctan in the measurement function via first-order Tay-
lor expansion (linearization). It uses the measurement Jacobian
matrix H evaluated at the predicted state Xj;_; during the
update step:

oh 1 00
e = o), ”[0 0 1]'
X=Xg|k—1
The standard EKF prediction and update equations [7] are
used, yielding the state estimate)EEKF = [éx, éx, Or]T which

drives the robot’s control.

5) Unscented Kalman Filter (UKF): Implemented for com-
parison using the filterpy library [10]. The UKF employs
the unscented transform with MerweScaledSigmaPoints (pa-
rameters « = 0.1, = 2.0,k = 0) to directly propagate
state uncertainty through the non-linear measurement function
h(x) = [x1,arctan(z;/f)]T without requiring explicit lin-
earization or Jacobian matrices. It uses the same linear motion
model function f(x, dt) = Fx and the same Q and R matrices
as the EKF for fair comparison. Its state estimate)“(EKF is
logged.

6) Control Law: The robot’s motion is governed by the
EKF’s filtered state estimate XEXF and UKF’s filtered state
estimate xKF.

o Turning: If a valid ball is detected but the filtered error
magnitude |éj| exceeds the threshold, a Proportional-
Derivative (PD) control command is generated for turn-
ing: N

up =Kpér + Kpég

. The output wug is clamped to the range
[-SEARCH_SPEED, +SEARCH_SPEED] and applied
differentially to the wheels (vieft = Uk, Vright = —Uk).

o Approach: If |é;] < ERROR_THRESHOLD and the
ball’s area A < SAFE_AREA_THRESHOLD, the robot
drives straight forward. This phase includes the cleared
area avoidance check (Section [[I-D).

o Searching: If no valid ball is detected , the robot spins
in place at £SEARCH_SPEED in a randomly chosen
direction.

D. Multi-Target Sequencing, Avoidance, and Termination

To enable the robot to collect multiple targets sequentially
while avoiding redundant efforts, several logic components are
integrated into the control loop:

1) Collection Memory and Verification: The system main-
tains a list of the world coordinates (obtained via GPS) where
targets have previously been successfully collected. Upon
reaching a potential target (i.e., centered in view and estimated
to be sufficiently close based on visual cues like area),
the robot performs a final proximity check. It compares its
current GPS location against all previously recorded collection
locations. If it finds itself within a small, predefined distance
threshold of any known collected location, it presumes this
is a target it has already processed. In this case, collection
is aborted. If the proximity check confirms the target is likely
new, the collection proceeds: the current GPS location is added
to the memory of collected locations, and a timer tracking the
time of the last successful collection is updated.

2) Disengagement Maneuver: Whether a collection attempt
is successful (a new GPS location is stored) or aborted
(due to proximity to an already collected location), the robot
executes a standardized disengagement maneuver. This typi-
cally involves reversing direction for a short period and then
rotating approximately 180 degrees, facilitating the search for
subsequent, distinct targets.

3) Cleared Area Avoidance: To prevent the robot from
inefficiently re-entering areas it has already cleared during
its approach to other potential targets, a proactive avoidance
mechanism is employed. While driving forward towards a
centered target, the robot continuously monitors its GPS
position relative to all previously collected locations. If it
enters a larger, predefined “avoidance radius” surrounding any
collected location, the forward approach is immediately halted.
An evasive maneuver (e.g., stopping and re-initiating a search
scan, or a specific turning pattern) is triggered to redirect

the robot away from the cleared zone before it continues its
operation.

4) Task Termination Condition: To ensure the robot eventu-
ally stops its mission without requiring prior knowledge of the
total number of targets, a timeout heuristic based on collection
activity is used. The system tracks the elapsed time since the
last target was successfully collected and recorded. If this time
exceeds a specified maximum duration, the robot concludes
that no further reachable targets are likely to be found and
terminates its operational loop.

E. Path Planning

To compute the optimal path through the environment, we
used the A* search algorithm, a heuristic-based pathfinding
method that balances path cost and estimated distance to the
goal. A* maintains a priority queue of nodes based on the
evaluation function:

f(n) = g(h) +h(n)

where g(n) is the the cost from the start node to node n, h(n)
is the heuristic estimate of the cost from node n to the goal (we
used Euclidean distance h(n) = /(@ — 24)% + (Yn — y4)?)
This algorithm expands based on the lowest f(n) by updating
the lowest cost f(n) of neighbors and parents nodes until all
targets are reach.

F. Algorithm Flow Summary

In summary, the robot initializes by starting a random
search spin. The main control loop continuously performs state
prediction (EKF and UKF), acquires and processes camera
images to detect the largest valid yellow ball contour, and
performs state updates. If a ball is detected, the EKF-based
PD controller turns the robot to center it. Once centered, the
robot checks if its path is clear of previously collected areas;
if the path is clear, it drives forward. If it enters an avoidance
zone, it performs an evasive maneuver. If it reaches the target
proximity, it performs a final GPS proximity check. If the
ball is verified as new, it is collected (GPS logged, collection
timer reset), and a post-collection maneuver is executed. If it’s
identified as already collected (either during approach or final
check), an appropriate maneuver moves the robot away. If no
valid ball is detected, or after a maneuver, the robot resumes its
search spin. Once the first bot gathers all the GPS coordinates
of the targets, the second bot will calculate the shortest path
using A* path planning algorithm as described in section E.
Refer to Algorithm [I]for a summary of the system framework.

III. EXPERIMENTS

In this section, we are going to detail the experimental
setup, procedures, and evaluation metrics used to validate the
proposed ball detection, multi-ball collection system, compare
the performance of the EKF and UKF for state estimation, and
path planning within this framework.

Algorithm 1 Sequential Yellow Ball Tracking with EKF and
UKF

0: Initialize EKF/UKF state x, P

0: Initialize collected_gps_list «+ (

0: while robot.step() do

0: #HH#HPREDICTION ####
0. (x,P)« predict(x,P,F,Q)
0 ####DETECTION ####
0: (z,area) < detectBall(])
0: if no detection then
0 rotateSearch()
0 continue

0: end if

0 ####UPDATE ####

0: (x,P) <« update(x,P,z,H,R)

0: < x|0]; ¢ « x[1] {Extract filtered state}
0: #H#H##CONTROL ###H#
0

0

0

0

0

0

0

0

0

0

0

if |é] < Emax and area < Ay then
driveForward()
else if |¢| < Epax and area > Ap.y then
pCllI’!’ <_ getGPS()
Append peyrr to collected_gps_list
performManeuver()
else R
rotatePD(é,é)
end if
: end while
. ###H#PATH PLANNING #### =0

A. Experimental Setup

1) Hardware and Software Platform: All experiments
were conducted within the Webots robotic simulator (Version
R2025) The robot model used was the standard TurtleBot3
Burger PROTO, equipped with a forward-facing RGB Camera
sensor and a GPS sensor node. The simulation environment
consisted of a planar arena containing three yellow spheres
(target objects) placed at known locations.

The robot controller was implemented in Python (Version
3.11) using the Webots controller API Key libraries
utilized include OpenCV for image processing and contour
detection, NumPy for numerical operations and state/matrix
representations, and filterpy [10] for the UKF implemen-
tation.

2) Key Experimental Parameters: The core parameters gov-
erning the robot’s behavior and the filters’ operation were
configured as follows, summarized in Table [I These values
were determined through initial tuning and remained con-
sistent across the comparative experiments unless otherwise
noted.

B. Experiments Conducted

The primary goal was to evaluate the system’s ability to
sequentially collect multiple targets, compare the filtering
performance of the EKF and UKF under identical conditions,

o UKF Performance: The UKF’s filtering output, gener-
ated using the same inputs and noise parameters as the

EKEF, serves as the primary comparison point to evaluate

potential improvements offered by its different approach
to handling non-linearity.

o Path Planning Accuracy: Compares the optimal path
generated by the A* algorithm with all manually calcu-

lated possible paths and their total lengths.

2) Validation Metrics: Performance was evaluated using
both qualitative and quantitative metrics:

o Qualitative Analysis:
— Visual inspection of the masks of the yellow balls

over the process of robot searching.

— Visual inspection of time-series plots comparing the
raw measured error against the EKF-filtered and
UKF-filtered error signals. Key aspects observed

TABLE I
KEY EXPERIMENTAL PARAMETERS
Category | Parameter [Value
Control P Coefficient (K p) 0.05
D Coefficient (K p) 0.05
Error Threshold (Eyp,) 10 pixels
Search Speed (Ssearch) 5 rad/s
Forward Speed (Stwq) 5.0
Vision Min Area (Amin) 30 pixels
Safe Area Threshold (Agafe) 900 pixels
HSV Lower Bound [20, 70, 60]
HSV Upper Bound [35, 255, 255]
Morph Kernel Size 7,7
Collection/ Min GPS Collect Dist (Dcolect) 0.3 m
Avoidance Avoidance Radius (Ravoid) 0.6 m
Termination | Max Time w/o Collect (Ttimeout) | 60.0 s
Filters Process Noise (Q) diag(0.01, 0.01, 0.001)
Measurement Noise (R) diag(100, 0.01)
UKF Alpha () 0.1
UKEF Beta (3) 2.0
UKF Kappa (k) 0
Simulation Timestep (At) 32 ms
Focal Length (f) 77.25 pixels

and evaluate the path planning capacity given the recorded
GPS information. The main experiment involved:

Placing 3 yellow balls at known, distinct locations within
the arena.

Running the robot controller which uses the EKF and
UKEF state estimate for active control (turning, approach-
ing).

Logging the raw measured pixel error, the EKF’s filtered
pixel error, and the UKF’s filtered pixel error at each
timestep where a valid target was detected.

Recording the GPS locations upon successful ball collec-
tions.

Allowing the run to continue until either all specified balls
were collected or the termination condition (timeout since
last collection) was met.

Multiple trials (5 runs) were conducted with the same
initial setup to assess consistency.

Using the mean GPS coordinates obtained from previous
trials, we applied the A* algorithm to compute the
optimal path and its total length. This result was then
compared with the straight-line paths between target lo-
cations to evaluate the effectiveness of our path planning
approach.

C. Baseline and Metrics

1) Baseline Algorithms: To evaluate the effectiveness of the
implemented filters, the following baselines were considered:

Raw Measurement: The unfiltered horizontal pixel error
(émeas) calculated directly from the detected contour
centroid serves as the baseline input signal, representing
the performance without any state estimation filtering.
EKF Performance: The EKF provides the baseline fil-
tering performance, as it is the filter actively used for
controlling the robot in these experiments.

were signal smoothness, noise reduction level, track-
ing responsiveness (lag) during maneuvers, and sta-
bility when the error was expected to be near zero
(during final approach).

— Observation of the robot’s behavior in the simulation,
noting the success or failure of target acquisition,
approach smoothness, effectiveness of avoidance ma-
neuvers, and successful task completion (collecting
all balls before timeout).

o Quantitative Analysis:

— Filtered Error Variance: Calculation of the overall
variance (0?) or standard deviation (¢) for both
the EKF and UKEF filtered error time series. Lower
values indicate greater smoothness / noise reduction.
This was also considered during stable approach
phases (e.g., last second before collection) to assess
stability near the target state.

— Object Localization Accuracy: The accuracy of the
robot’s final position relative to the target at the
moment of collection. This is quantified by cal-
culating the 2D Euclidean distance between the
robot’s recorded GPS coordinates upon collection
(Pewrr = [2,y,2]) and the known ground truth
coordinates (Perue = [%t, Yt, 2¢], Obtained from the
simulation world file) of the corresponding target
ball: \/(z — 2;)2 + (y — y;)2. Root Mean Squared
Error (RMSE) of these distances (in meters) across
all successful collections are reported. Lower values
indicate higher accuracy in reaching the target loca-
tion before the collection decision and maneuver.

— We use the straight-line distances using point dis-
tance formula to determine the optimal visiting or-
der of the target points, since it reflects the most
efficient sequence without considering obstacles. For
example, given three coordinates A, B, and C, we
calculate the total length for all possible visiting
orders (e.g, A - B - C, B - A — C, etc)
to determine the optimal path or the optimal visiting
order and compare this to A* result.

IV. RESULTS
A. Object Detection Accuracy

Because we lack pixel-wise ground truth annotations in our
simulated environment, it is infeasible to compute standard
detection metrics such as false-positive rate, precision/recall,
or mAP/AP. Nonetheless, qualitative inspection (Fig.3) reveals
that under strong shading the bottom portion of the yellow
sphere fails to satisfy our hue/saturation thresholds and is
omitted from the binary mask. This manifests as a systematic
under-segmentation in high-contrast regions. While our mor-
phology pipeline recovers some of the missing pixels, residual
gaps remain.

Fig. 3. Detection and Localization Framework

B. Filter Performance Comparison

To evaluate the effectiveness of the state estimation filters,
the filtered horizontal pixel error outputs from the EKF and the
UKF were compared against the raw measured error derived
directly from the vision system. Figure] presents a time-series
plot illustrating these three signals during a representative
multi-ball collection run.

Qualitatively, both the EKF (orange trace) and UKF (red
trace) significantly reduce the high-frequency noise present
in the raw measured error (blue trace), providing a much
smoother signal suitable for control. The plot shows periodic
oscillations corresponding to the robot’s search-and-approach
cycles for multiple balls. Visually, both filters appear to track
the general trend of the measured error reasonably well,
although the EKF trace appears noticeably smoother than the
UKF trace in this particular experiment. Neither filter exhibits
excessive lag in response to changes in the measured error
during turns or approaches.

Quantitatively, the variance of the filtered error signals
confirms the visual observation of noise reduction. The raw
measured error exhibited a variance of 142.28 pixels®. The
EKF achieved a substantially lower variance of 81.66 pixels?,
indicating significant smoothing. Interestingly, the UKF pro-
duced a higher variance of 106.65 pixels2, which, while still
much lower than the raw measurement, was less smooth than
the EKF output in this run.

Based on these results, the EKF demonstrated superior noise
reduction (lower variance) compared to the UKF for this
specific experimental run and parameter tuning, while both

filters effectively tracked the target signal compared to the
raw measurements.

Measured vs. EKF-filtered vs. UKF-filtered

—— Measured error
EKF-filtered error
= UKF-filtered error

(Collected Ball

Horizontal error (pixels)

Sample Index

Fig. 4. Comparison of Measured Error and Filtered Error

C. Object Localization GPS Accuracy

The positional precision with which the explorer robot stops
in front of each target is evaluated in the world reference
frame. For every successful collection we store the robot’s
GPS fix peur = [2,y,2]" at the instant the ball triggers the
“collected” flag and compare it against the ground-truth ball
coordinates puue = [T, s, 2] taken from the Webots world
file. The planar localisation error for the i™ ball is therefore

€ = || Peurr,i — ptrue,z'||2 = \/(ﬂﬁz —x¢3)? + (Y — yr,i)? [m].

Robot Localization Error at Ball Collection

I
> o N a2 » b o N N » b o
> N > N N > N > N N > N
S & & & @ @ @ @ @& @ QR
» % G a % G ' < o < o

NN
& <& A& <&
RO
&

0.4

=3 =3
~ w

2D Euclidean Error (m)

o

0

PGS NGNS G S S LS LR\ P\ PN
® P P P PP P PP PP P PP

Collection Event (Ball, Trial)

Fig. 5. Per-ball localization error distribution. Most stops are within one
ball radius of the true center; the tail corresponds to occasions where partial
occlusion reduced visual feedback.

Figure [5] shows individual errors and their distribution.
Errors cluster tightly around 0.4m, confirming that the EKF-
and UKF-filtered visual servoing reliably brings the robot to
within 0.3255 4 0.0906 meters (close to the ball radius) of
the ground-truth ball position averagly. Remaining deviations
arise when the ball is momentarily lost in shadow during the
final approach, causing the robot to execute a corrective turn
before stopping.

D. Path Planning Performance

Given the three GPS coordinates collected by Robot 1,
the A* path planning algorithm generates an optimal path:

B — C — A, as shown in Figure [6] with a total length of
345.89 grid units. To validate this result, we calculated the
total distances for all possible visiting orders using straight-
line (Euclidean) distance between points, as shown in Figure[7]
The A* output matches the optimal visiting order, confirming
that it selects the correct path sequence. However, the total
distance is about 18 units longer. This is expected, as A*
moves along a grid and cannot travel in a perfectly straight line
between targets—unlike the validation method, which directly
computes the shortest possible path using the point-to-point
distance formula. Figure [6] illustrates how A* takes slight
turns and detours, contributing to the extra distance. Another
reason for the discrepancy is that A* operates on a grid-based
map, where the environment is discretized into cells. This can
introduce path inefficiencies compared to continuous space.
One way to reduce this effect is by increasing the resolution
used during grid conversion, allowing for finer movement and
more accurate path representation.

Shortest Path using A*

Start
datat
data2
data3
A* Trajectory

Latitude

. . I L . I
-0.4 -0.2 0 0.2 0.4 0.6 0.8
Longitude

Fig. 6. The A* path planning algorithm suggests a optimal path B — C —

A

Straight-line distances in grid units for all permutations:

Start => C => B -> A | Distance: 375.52 grid units
Start -> C —=> A —> B | Distance: 343.85 grid units
Start -> B —> C —> A | Distance: 327.77 grid units
Start -=> B —> A -> C | Distance: 329.17 grid units
Start -=> A —> C —> B | Distance: 363.52 grid units
Start -> A —> B —> C | Distance: 396.60 grid units

=== Shortest Straight-Line Path in Grid Units ===
Start -> B —> C —> A | Total Distance: 327.77

Fig. 7. All possible path with their length from Matlab.

V. CONCLUSION & DISCUSSION

Our two-robot system — vision-based detection/localization
by Robot A and A* path planning by Robot B — demonstrates
that a lightweight HSV+EKF pipeline can achieve sub-meter
stopping accuracy in real time. The EKF’s low variance
compared to the UKF highlights its suitability under moderate

nonlinearity and measurement noise. In summary, our key
findings include:

o Detection Quality: While our simple color-based method
operates in real time with minimal overhead, it under-
segments shaded regions, motivating future deep-learning
detectors (e.g., YOLO).

e Filter Performance: Both EKF and UKF substantially re-
duce measurement noise; the EKF yielded lower variance
(81.7px2) than the UKF (106.6px2) in our trials, making it
more suitable for stable servoing under our assumptions.

e Localization Accuracy: The average stopping error rel-
ative to the true ball centers was 0.33 &= 0.09 m, within
the ball’s radius, demonstrating reliable end-effector po-
sitioning.

e Path Planning: The key finding is that the A* algorithm
successfully identifies the optimal visiting order of GPS
targets, and while its total path length is slightly longer
than the straight-line baseline due to grid constraints, this
gap can be minimized with higher resolution or post-
processing.

However, we also have some failure cases. We observed
under-segmentation when strong shadows dropped portions
of the ball outside our hue thresholds, leading to missed
detections and filter “resets”. Occasionally, these dropped mea-
surements caused the EKF to overshoot or reverse spinning,
since the simple constant-velocity model could not anticipate
sudden loss of visual feedback.

Among all the experiments and cases, the system excelled in
uniformly lit scenes with low background clutter. In these runs,
the EKF’s noise covariance (Q = diag(0.01,0.01,0.001)) and
measurement covariance (R = diag(100,0.01)) provided a
good balance of smoothness and responsiveness, giving us
stable servoing with minimal lag.

Considering the existing failure cases and according to what
we observed in the experiments, we propose the following
improvements for Future Iterations:

e Robust Detection: Replace HSV thresholding with a deep
detector (YOLO/Faster-RCNN) to handle shading and
complex backgrounds.

o Augmented Filter Model: Fuse IMU/odometry yaw rates
into the prediction step or adopt a particle filter to manage
multimodal uncertainty when measurements drop.

e Physical Validation: Deploy on hardware (Turtle-
Bot/AlphaBot) to evaluate performance under real-world
lighting and dynamic obstacles.

Finally, we want to discuss on our ethical considerations:
Real-world deployment in disaster zones raises safety and trust
issues: false positives could waste precious time or endanger
bystanders; privacy concerns arise if cameras record sensitive
scenes; and reliability under variable conditions (dust, smoke,
debris) must be guaranteed. Rigorous field testing, transparent
failure reporting, and consent protocols will be essential before
any rescue-robot system is entrusted with human lives.

The source code is stored in GitHub repository.

https://github.com/jesliu-27/e205_project.git

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

(10]

REFERENCES

M. T. Shahria, M. S. H. Sunny, M. I. 1. Zarif, J. Ghommam, S. L.
Ahamed, and M. H. Rahman, “A comprehensive review of vision-based
robotic applications: Current state, components, approaches, barriers,
and potential solutions,” Robotics, 2022, affiliations: Computer Science,
University of Wisconsin-Milwaukee; Marquette University; Sultan
Qaboos University; Mechanical Engineering, University of Wisconsin-
Milwaukee. Correspondence to M.H. Rahman. [Online]. Available:
https://www.mdpi.com/2218-6581/11/6/139

S. Daftry, M. Das, J. Delaune, C. Sorice, R. Hewitt, S. Reddy, D. Lytle,
E. Gu, and L. Matthies, “Robust vision-based autonomous navigation,
mapping and landing for mavs at night,” in Proceedings of the 16th
International Symposium on Experimental Robotics (ISER), Buenos
Aires, Argentina, 2018. [Online]. Available: https://www-robotics.jpl.
nasa.gov/media/documents/ISER_2018_Final_with_copyright.pdf

Y. Zhang, H. Yan, D. Zhu, J. Wang, C.-H. Zhang, W. Ding, X. Luo,
C. Hua, and M. Q.-H. Meng, “Air-ground collaborative robots for fire
and rescue missions: Towards mapping and navigation perspective,”
arXiv preprint arXiv:2412.20699, 2024. [Online]. Available: https:
/larxiv.org/abs/2412.20699

K. Fransen and van Eekelen, “Efficient path planning for automated
guided vehicles using a* (astar) algorithm incorporating turning
costs in search heuristic,” [International Journal of Production
Research, 2021. [Online]. Available: https://www.tandfonline.com/doi/!
full/10.1080/00207543.2021.2015806#abstract

N. Krishnaswamy, “A comparison of efficiency in pathfinding algorithms
in game development,” DePaul University, Honors Senior Thesis, 2009.
[Online]. Available: https://www.cdm.depaul.edu/academics/research/
Documents/TechnicalReports/2009/TR09-002.pdf]

Webots, “https://cyberbotics.com,” 2025, commercial Mobile Robot
Simulation Software. [Online]. Available: https://cyberbotics.com

R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45,
1960.

S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” in Proceedings of AeroSense: The 11th International
Symposium on Aerospace/Defense Sensing, Simulation and Controls.
Orlando, FL: International Society for Optics and Photonics, 1997.

A. R. Smith, “Color gamut transform pairs,” in Proceedings of
the 5th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH *78. New York, NY, USA: Association
for Computing Machinery, 1978, p. 12-19. [Online]. Available:
https://doi.org/10.1145/800248.807361

R. R. L. Jr., “Filterpy: Kalman filtering and optimal estimation library
in python,” https://github.com/rlabbe/filterpy, 2023, version 1.4.5.

https://www.mdpi.com/2218-6581/11/6/139
https://www-robotics.jpl.nasa.gov/media/documents/ISER_2018_Final_with_copyright.pdf
https://www-robotics.jpl.nasa.gov/media/documents/ISER_2018_Final_with_copyright.pdf
https://arxiv.org/abs/2412.20699
https://arxiv.org/abs/2412.20699
https://www.tandfonline.com/doi/full/10.1080/00207543.2021.2015806#abstract
https://www.tandfonline.com/doi/full/10.1080/00207543.2021.2015806#abstract
https://www.cdm.depaul.edu/academics/research/Documents/TechnicalReports/2009/TR09-002.pdf
https://www.cdm.depaul.edu/academics/research/Documents/TechnicalReports/2009/TR09-002.pdf
https://cyberbotics.com
https://doi.org/10.1145/800248.807361
https://github.com/rlabbe/filterpy

	Abstract & Introduction
	Motivation & Significance
	Related Work

	Methodology
	System Architecture Overview
	Object Detection Method
	State Estimation Filters & Control
	State Representation
	Motion Model (for the both filters)
	Measurement Model (for the both filters)
	Extended Kalman Filter
	Unscented Kalman Filter (UKF)
	Control Law

	Multi-Target Sequencing, Avoidance, and Termination
	Collection Memory and Verification
	Disengagement Maneuver
	Cleared Area Avoidance
	Task Termination Condition

	Path Planning
	Algorithm Flow Summary

	Experiments
	Experimental Setup
	Hardware and Software Platform
	Key Experimental Parameters

	Experiments Conducted
	Baseline and Metrics
	Baseline Algorithms
	Validation Metrics

	Results
	Object Detection Accuracy
	Filter Performance Comparison
	Object Localization GPS Accuracy
	Path Planning Performance

	Conclusion & Discussion
	References

