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Abstract

For years, YOLO was demonstrated as the golden stan-
dard in object detection that features real-time speed and
efficiency [7]. On the other hand, Object Detection mod-
els with an embedding of a Transformer architecture like
DETR opened new paradigm insights into an area capa-
ble of global contextual understanding and capturing long-
range dependencies within images [2]. In this work, we
have compared YOLO and DETR’s performances in carry-
ing out traffic object detection tasks under the constraints of
transfer learning and efficiency. Pre-trained and fine-tuned
models are evaluated on the KITTI dataset [4], with Metric
scores including mean Average Precision (mAP), class ac-
curacy, and inference time. While YOLO demonstrates su-
perior efficiency in most scenarios, DETR exhibits promise
in transferability and robustness considering our small-size
custom dataset with no more than 8k images. Our find-
ings provide nuanced insights into the suitability of these
models across various applications which offers a founda-
tion for future advancements in object detection research.
For the code reference, please check this GitHub reposi-
tory. For the dataset reference, please check KITTI dataset
on Roboflow. [8]

1. Introduction
Traffic object detection is critical for intelligent trans-

portation systems. Efficient detection of objects such as
pedestrians, vehicles, and road signs is essential for safety,
traffic flow, and real-time decision making.

Deep Learning models have revolutionized object detec-
tion. YOLO (”You Only Look Once”), is a benchmark
for real-time detection due to its speed and precision [7].
Meanwhile, Transformer based models, such as DEtection
TRansformer (DETR), have introduced global contextual
understanding, leveraging the Transformer architecture to
capture long-range dependencies in images [2, 3]. In this
project, we compared DETR’s performance including trans-
ferability and efficiency to YOLO in traffic object detection

with object detection subset of the KITTI dataset [4] which
includes 7464 images. Our main questions are:

1. DETR and YOLO’s performance under standalone and
transfer learning settings.

2. Trade-offs between inference time, mean Average Pre-
cision (mAP), and class accuracy across object sizes.

Our findings highlight DETR’s promising transferability
and robustness considering a small dataset we used for the
sake of computation power and training time. Meanwhile,
YOLO demonstrates its efficiency and simplicity for object
detection tasks. These insights contribute to advancements
in traffic object detection, guiding model selection for di-
verse applications.

2. Related Work
2.1. YOLO: You Only Look Once

Figure 1. Framework of YOLO, illustrating its single-stage archi-
tecture for object detection. Adapted from the SSD paper [5].

”You Only Look Once” (YOLO) deep learning-based
framework revolutionized object detection in 2015 by
Joseph Redmon. This framework offers a unified and real-
time solution. [7] Unlike traditional multi-stage detectors,
YOLO processes the entire image in a single pass, treat-
ing object detection as a regression problem. To start with,
the image is divided into a grid, with each cell predicting
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bounding boxes, confidence scores, and class probabilities.
This approach enables YOLO to achieve real-time perfor-
mance, processing up to 45 frames per second (FPS), as
introduced in the paper cited. [5]. For this study, we se-
lected YOLOv8, one of the iterations of the YOLO series
published in 2023. This represents a relatively stable and
advanced version of YOLO. The pretrained model provided
by Ultralytics is widely recognized for its robustness and
ease of use, making it ideal for this comparative study on
traffic object detection [9].

Figure 2. Comparison of YOLOv8, YOLOv7, YOLOv6, and
YOLOv5 on COCO in terms of mAP and latency, adapted from
Ultralytics documentation [9]. YOLOv8 demonstrates superior
performance in both accuracy and speed.

2.2. Detection Transformer (DETR)

DETR is a paradigm shift to the current object detec-
tion approaches by embedding the Transformer architec-
ture, designed for natural language processing tasks, into
an object detection framework. The DETR was introduced
by Carion et al. in 2020 [2]. Rather than using tradi-
tional hand-design components such as anchor boxes and
non-maximum suppression, it formulates object detection
as a set prediction problem, where a fixed number of object
queries are matched to ground truth objects via a bipartite
matching process.

As shown in Figure 3, DETR employs a traditional CNN
backbone to acquire a 2D representation of an input im-
age. The model compresses it and enhances it with a po-
sitional encoding prior to inputting it into a transformer en-
coder. A transformer decoder receives a limited set of learnt
positional embeddings, referred to as object queries, and
also attends to the encoder output. Each output embedding
from the decoder is processed through a shared feedfor-
ward network (FFN) that predicts either a detection (class
and bounding box) or a ”no object” classification. [2]. By
simultaneously attending to all components of the image,
DETR collects long-range dependencies and global contex-
tual information, hence enabling effective object detection
in intricate scenarios. Despite its efficacy, DETR’s imple-
mentation of Transformers incurs significant computational
overhead particularly during training. This fact makes it un-
suitable for resource-limited applications. Conversely, the
management of occlusion and congested environments ren-
ders it a highly attractive model for applications requiring

substantial durability and adaptability.

Figure 3. Model Architecture of DETR [2]

2.3. KITTI Dataset

The KITTI dataset is a widely used benchmark for
autonomous driving research. It provides diverse real-
world scenarios for evaluating detection models [4]. In
this project, we utilized the Object Detection subset of the
KITTI dataset, accessed through Roboflow, as prepared by
Sebastian Krauss [8]. This version includes annotated data
across eight object classes: Car, Cyclist, Misc, Pedestrian,
Person sitting, Tram, Truck, and Van. The Object Detec-
tion subset is divided into 5,223 images for training, 1,495
images for validation, and 746 images for testing.

3. Methodology

3.1. Data Preprocessing

Data Preparation for YOLOv8

To ensure compatibility with the YOLOv8 model’s input
requirements, the dataset was resized using a stretched res-
olution of 640x640 pixels [8]. No additional data augmen-
tation was applied during preprocessing. This resizing en-
sures consistency with the pretrained YOLOv8 architecture
while maintaining the integrity of the original annotations.

In our study, we used the training and validation sets
to fine-tune and evaluate the performance of YOLOv8 and
DETR models, taking advantage of the diverse scenarios
and object classes in the KITTI dataset. Additionally, we
used the training, validation, and testing sets to evaluate
YOLOv8’s baseline performance and YOLOv8 with trans-
fer learning. This ensures a comprehensive analysis of de-
tection accuracy and efficiency.

Data Preparation for DETR

While the YOLOv8 model relied on a uniform resized in-
put with minimal preprocessing, our DETR-based trans-
fer learning workflow introduced a more complex on-the-
fly data augmentation pipeline. Instead of resizing all im-
ages offline, we dynamically applied each training iteration
with geometric and color-based transformations. In this
way, generalization is enhanced by providing more varied
input patterns to DETR. Concretely, this includes random



Figure 4. A sample image from the KITTI dataset resized to
640x640 pixels, showing annotations for multiple object classes.

perspective transforms, horizontal flips, brightness and con-
trast adjustments, and hue-saturation-value (HSV) shifts for
data augmentations with Albumentations [1], which hap-
pens only during training. This is carefully wrapped up in a
custom PyTorch dataset class. Unlike the YOLOv8 prepro-
cessing, this allows the model to see slightly different ver-
sions of the same image across epochs and prevents overfit-
ting by making it more robust.

3.2. Experiment Workflow

Figure 5. Overview of the experiment workflow, including dataset
preparation, model implementation, evaluation, and analysis.

Our experiment workflow was designed to comprehen-
sively evaluate the performance of YOLOv8 and DETR
models for traffic object detection using the KITTI dataset.
The workflow consists of the following key stages:

Model Implementation: Pretrained YOLOv8 and
DETR models were used as the starting point. The models

were fine-tuned using the training and validation sets, while
their baseline performance was directly evaluated using the
test set.

Evaluation Metrics: We focused on key metrics such as
mean Average Precision (mAP), class-wise accuracy, and
inference time to compare the models’ efficiency and ro-
bustness across varying object sizes and scenarios.

Analysis: Results were analyzed to highlight the
trade-offs between YOLOv8’s real-time performance and
DETR’s robustness and adaptability, particularly in scenar-
ios involving smaller datasets or more complex environ-
ments.

The workflow, as illustrated in Figure 5, provides a
structured approach for evaluating object detection models.
By incorporating cross-comparison metrics and curves, the
analysis ensures consistency and reliability in comparing
YOLOv8 and DETR under diverse conditions.

4. Results
The evaluation metrics depicted in Figure 6 highlight

clear performance differences across various configura-
tions of DETR and YOLOv8. Starting with the IoU
threshold-based metrics (top plot), we observe that the fully
trained YOLO v8 (66.7% − 84.0%) consistently outper-
forms trained DETR(41.5% − 71.1%) and DETR trained
with augmented training set (38.0% − 65.5%), which
achieved notably higher mAP values at all IoU threshold.
This suggests that YOLOv8, after fine-tuning, is better able
to precisely localize and classify objects. Among the DETR
models, the normally trained DETR and the trained DETR
with augmentation (Trained DETR (Aug)) both show im-
provement over the pre-trained DETR baseline, particularly
at the stricter IoU thresholds, indicating that our experi-
ment made DETR effectively transfer-learning from KITTI
dataset.

When examining performance across different object
sizes (bottom plot), the trends remain consistent. YOLO
v8 maintains its advantage across small, medium, and large
objects detection compared to DETR and DETR with aug-
mented training set on KITTI. Additionally, we can observe
that both detection frameworks are good at detecting larger
objects with a higher mAP.

Model Mean Inference Time (s) Std Dev (s)

YOLO v8 0.0087 0.0003
DETR 0.0163 0.0005
DETR (Aug) 0.0166 0.0043

Table 1. Mean inference time with standard deviation for
YOLOv8, DETR, and DETR with data augmentation.

Additionally, in terms of inference efficiency, as shown



Figure 6. mean Average Precision comparison of two detection
frameworks

in Table 1, YOLO v8 achieves the fastest mean inference
time at 0.0087 seconds per image, nearly twice as fast as
the DETR-based models. Both the baseline DETR and the
augmented DETR variants require approximately 0.017 to
0.018 seconds per inference, indicating a slower processing
pipeline. Notably, while data augmentation improved the
detection performance for DETR, it also introduced a higher
variance in inference times. Overall, these results suggest
that YOLOv8 is more computationally efficient.

5. Analysis & Discussion
In terms of DETR’s performance, the visualization of

self-attention maps from various layers and heads of the
DETR model reveals a pattern that helps explain the sub-
optimal mAP observed in DETR’s performance compared
to YOLO v8. In the provided figures (Fig.7), the high-
lighted attention regions fail to strongly correlate with se-
mantically meaningful areas of the scene, such as distinct
objects or their boundaries with our transfer-learned DETR
model. Instead, the attention weights appear dispersed and
lack a strongly coherent focus on salient targets like vehi-
cles or pedestrians.

This broad, mid-intensity distribution suggests that the
model currently has difficulty in concentrating its repre-
sentational capacity on the most critical parts of the im-
age. When self-attention does not mostly prioritize mean-
ingful object features, the downstream object queries can-
not fully reliably infer high-quality bounding boxes and
class labels, which ultimately leads to lower detection ac-
curacy and reduced mAP. Although DETR’s transformer ar-
chitecture is designed to learn object-centric representations
through attention, the current results indicate that the train-

ing or dataset conditions might not have been sufficient to
guide the model towards sharper, more discriminative atten-
tion patterns. Considering the size of the used dataset (with
no more than 7k images for training and validation), further
optimization and additional data augmentation techniques
are necessary to help the model better differentiate objects
from the background and enhance the resulting mAP.

Observing YOLO’s performance on KITTI dataset
(more details shown in Appendix A), we can conclude
that we find that YOLO not only achieves higher mAP
scores but also maintains a more stable attention distribu-
tion over object regions. Its one-stage detection pipeline,
combined with extensive pre-training on large-scale data,
enables faster convergence on smaller datasets and more
robust localization of vehicles, pedestrians, and other traf-
fic participants. Consequently, YOLO’s efficiency and its
stronger correlation between predicted bounding boxes and
actual object boundaries highlight why it remains a pre-
ferred choice in settings where both accuracy and inference
speed are critical.

Figure 7. Attention Overlays for Test Images at Different Layers
& Heads

6. Conclusion
In this study, we conduct a comprehensive comparison

between DETR and YOLO v8 for traffic object detection us-
ing the tiny KITTI dataset, comprising approximately 8,000
photos. From our experiment results, YOLO v8 surpassed
DETR in several aspects including mAP and inference time.
We did expect a lower inference efficiency for DETR due



to its intricate model structure and higher operating com-
plexity, but we anticipated a higher detection accuracy for
DETR than YOLO v8 before the experiment, particularly
considering its ability to use global contextual cues effec-
tively even with significantly constrained data. The features
of DETR make it particularly advantageous for real-time,
latency-sensitive applications such as autonomous driving.
The result show that both models significantly profited from
transfer learning, attaining elevated mAP values and en-
hanced robustness to difficult object categories and fluctu-
ating environmental variables.

Significantly, DETR’s encouraging outcomes in data-
scarce environments provide optimism for situations where
abundant, fully annotated datasets are not readily available.
The Transformer-based design inherently supports intri-
cate item distributions and contextual interactions, enabling
the model to perform effectively with a constrained train-
ing dataset. DETR exhibits greater computational require-
ments, yet fails to achieve YOLOv8’s superiority in real-
time responsiveness; nonetheless, this compromise may be
justified if global reasoning and scalability are essential.

In conclusion, our findings indicate that practitioners
must meticulously evaluate their priorities: YOLOv8 may
be preferred for its speed and efficiency, whereas DETR
may be favored for its promising superior contextual com-
prehension, particularly with smaller or more specialized
datasets. Our work facilitates further study of the testing
of other DETR variants, including real-time DETR and de-
formable DETR [6, 10]. Additional studies with more di-
verse datasets and advanced data augmentation techniques
are also expected to further elucidate the strengths, and to a
lesser extent the flaws, of each methodology. This work es-
tablishes a foundation for enhancing model selection in in-
telligent transportation systems, facilitating future advance-
ments in traffic object recognition and related areas.
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APPENDIX A: More Performance Analysis
for YOLO v8 on KITTI Dataset

In this section, we present the evaluation results for the
pretrained YOLOv8 model and the YOLOv8 model fine-
tuned with transfer learning on the KITTI dataset. The
evaluation includes key performance metrics such as pre-
cision (P), recall (R), mean Average Precision at IoU=0.5
(mAP@50), and mean Average Precision at IoU=0.5:0.95
(mAP@50-95).

Table 2 summarizes the precision and recall metrics for
all classes, while Table 3 highlights the detection accuracy
through mAP metrics.

Class Model P R
All Pretrained 0.165 0.0275

Transfer Learning 0.873 0.768
Car Pretrained 0.323 0.00342

Transfer Learning 0.941 0.924
Cyclist Pretrained 0.167 0.00709

Transfer Learning 0.897 0.745
Misc Pretrained 0.00129 0.0108

Transfer Learning 0.950 0.817
Pedestrian Pretrained 0.000 0.000

Transfer Learning 0.935 0.574
Tram Pretrained 0.308 0.150

Transfer Learning 0.892 0.868
Truck Pretrained 0.519 0.0491

Transfer Learning 0.980 0.935
Van Pretrained 0.000 0.000

Transfer Learning 0.922 0.916

Table 2. Precision (P) and Recall (R) metrics for YOLOv8 models
on the KITTI test dataset. Metrics are reported for pretrained and
fine-tuned models. The fine-tuned YOLOv8 model demonstrates
significantly improved precision and recall across all classes.

Precision and recall provide a measure of the model’s
ability to correctly detect objects (precision) and its effec-
tiveness at identifying all objects in the dataset (recall). The
fine-tuned YOLOv8 model achieves substantially higher
precision and recall compared to the pretrained model, es-
pecially for classes such as Car and Truck.

The mean Average Precision (mAP) provides a com-
prehensive evaluation of detection accuracy across all ob-
ject classes. The fine-tuned YOLOv8 model significantly
outperforms the pretrained model in both mAP@50 and
mAP@50-95, demonstrating its effectiveness in adapting to
the KITTI dataset.

Class Model mAP@50 mAP@50-95
All Pretrained 0.095 0.0578

Transfer Learning 0.840 0.667
Car Pretrained 0.163 0.119

Transfer Learning 0.955 0.832
Cyclist Pretrained 0.0881 0.00881

Transfer Learning 0.848 0.589
Misc Pretrained 0.000665 6.65e-05

Transfer Learning 0.896 0.675
Pedestrian Pretrained 0.000 0.000

Transfer Learning 0.768 0.501
Tram Pretrained 0.187 0.129

Transfer Learning 0.920 0.732
Truck Pretrained 0.273 0.206

Transfer Learning 0.966 0.837
Van Pretrained 0.000 0.000

Transfer Learning 0.947 0.808

Table 3. mAP@50 and mAP@50-95 metrics for YOLOv8 mod-
els on the KITTI test dataset. The fine-tuned YOLOv8 model ex-
hibits significant improvement in detection accuracy compared to
the pretrained model.

Comparison of Model Behavior: Pretrained vs.
Transfer Learning

This subsection compares the performance of the pre-
trained YOLOv8 model and the YOLOv8 model fine-tuned
with transfer learning using key evaluation curves—F1-
Confidence, Precision-Confidence, Precision-Recall, and
Recall-Confidence.

The F1-Confidence curves (Figure 8) reveal improved
balance between precision and recall after transfer learning,
with the fine-tuned model peaking at 0.81, compared to the
pretrained model’s low F1 score.

The Precision-Confidence curves (Figure 9) show sub-
stantial precision gains, with the fine-tuned model achiev-
ing near-perfect precision at higher confidence thresholds,
unlike the pretrained model’s unstable trends.

The Precision-Recall curves (Figure 10) highlight im-
proved recall for classes like Trucks (0.966) and Vans
(0.947) in the fine-tuned model, while the pretrained model
exhibits minimal recall.

The Recall-Confidence curves (Figure 11) emphasize
enhanced recall, with the fine-tuned model exceeding 0.8
across multiple thresholds, compared to the pretrained
model’s recall below 0.2.

These results demonstrate that transfer learning signif-
icantly improves YOLOv8’s detection performance on the
KITTI dataset by enhancing the balance between precision
and recall.



Figure 8. F1-Confidence Curves: Pretrained YOLOv8 (top) vs.
Transfer Learning (bottom).

Figure 9. Precision-Confidence Curves: Pretrained YOLOv8 (top)
vs. Transfer Learning (bottom).

Figure 10. Precision-Recall Curves: Pretrained YOLOv8 (top) vs.
Transfer Learning (bottom).

Figure 11. Recall-Confidence Curves: Pretrained YOLOv8 (top)
vs. Transfer Learning (bottom).
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